首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   144篇
  免费   16篇
  国内免费   3篇
  2022年   1篇
  2021年   7篇
  2020年   2篇
  2019年   5篇
  2018年   9篇
  2017年   4篇
  2016年   3篇
  2015年   8篇
  2014年   4篇
  2013年   5篇
  2012年   11篇
  2011年   13篇
  2010年   10篇
  2009年   9篇
  2008年   9篇
  2007年   4篇
  2006年   12篇
  2005年   5篇
  2004年   6篇
  2003年   4篇
  2002年   7篇
  2001年   6篇
  2000年   4篇
  1999年   2篇
  1996年   1篇
  1995年   1篇
  1993年   1篇
  1992年   2篇
  1991年   3篇
  1988年   1篇
  1984年   1篇
  1977年   2篇
  1976年   1篇
排序方式: 共有163条查询结果,搜索用时 31 毫秒
31.
Abortion of fertilized ovaries at the tip of the ear can generate significant yield losses in maize crops. To investigate the mechanisms involved in this process, 2 maize hybrids were grown in field crops at 2 sowing densities and under 3 irrigation regimes (well‐watered control, drought before pollination, and drought during pollination), in all possible combinations. Samples of ear tips were taken 2–6 days after synchronous hand pollination and used for the analysis of gene expression and sugars. Glucose and fructose levels increased in kernels with high abortion risk. Several FASCICLIN‐LIKE ARABINOGALACTAN PROTEIN (FLA) genes showed negative correlation with abortion. The expression of ZmFLA7 responded to drought only at the tip of the ear. The abundance of arabinogalactan protein (AGP) glycan epitopes decreased with drought and pharmacological treatments that reduce AGP activity enhanced the abortion of fertilized ovaries. Drought also reduced the expression of AthFLA9 in the siliques of Arabidopsis thaliana. Gain‐ and loss‐of‐function mutants of Arabidopsis showed a negative correlation between AthFLA9 and seed abortion. On the basis of gene expression patterns, pharmacological, and genetic evidence, we propose that stress‐induced reductions in the expression of selected FLA genes enhance abortion of fertilized ovaries in maize and Arabidopsis.  相似文献   
32.
E. Yagüe  M. I. Orus  M. P. Estevez 《Planta》1984,160(3):212-216
Evernia prunastri Ach., an epiphytic lichen growing on Quercus rotundifolia Lam., produces a -1,4-glucanase (EC 3.2.1.4) and a polygalacturonase (EC 3.2.1.15). The activity of these polysaccharidases increases as a response to incubation of the lichen with carboxymethylcellulose or sodium polygalacturonate, respectively. This increase in activity is thought to be the result of enzyme induction because it is inhibited by both cycloheximide and 8-azaguanine. Both polysaccharide-degrading enzymes are partially secreted into the incubation media.  相似文献   
33.
This paper describes the characteristics of a binding site for the major, lipo-oligosaccharide Nod factor of Rhizobium meliloti in roots of the symbiotic host plant, Medicago truncatula. Chemically synthesized NodRm-IV(Ac, S, C16:2) was labelled by tritiation to a specific activity of 56 Ci mmol?1 and this ligand was shown to be biologically active in the root hair deformation assay at 10?11 M. Binding of the ligand to a particulate fraction from roots of M. truncatula was found to be saturable and reversible with an affinity (Kd) of 86 nM and the binding characteristics were consistent with a single class of binding sites. Competition with modified Nod factors showed that the binding was independent of both the O-acetyl and the sulphyl group and did not depend on the unsaturation of the fatty acid. However, both moieties of the lipo-oligosaccharide are required for high-affinity binding since tetra-N-acetyl-chitotetraose and palmitate were found to be poor competitors of ligand binding. A binding site with analogous characteristics was also found in a similarly prepared particulate fraction of tomato roots. This binding site for Nod factors, termed NFBS1, which is present in both a leguminous and a non-leguminous plant, may have a more general role than symbiosis.  相似文献   
34.
青藏高寒区属于独特而典型的高原生态系统,草地生态系统作为其重要组成部分,在对高寒区生态安全以及农牧民生计的维系中,占有举足轻重的地位。目前,青藏高寒区的草地生态系统退化严重,因此该区退化草地的生态恢复工作是国家生态工作的重中之重。近年来,已有大量研究提出了各种有效的恢复手段,但缺乏因地制宜的系统性总结和论述。基于此,在已有研究的基础上,阐述了青藏高寒区退化草地现状,总结了高寒区各生态类型分区的主要生态问题,明确了不同集成技术与模式的适用区域和范围,同时对这些技术、措施和模式的恢复效果和恢复机制进行分析和讨论。并对未来高寒草地生态系统的研究进行了展望,以期为青藏高寒区退化草地的恢复治理、高寒草地生态系统结构和功能稳定性维系提供系统的理论基础与技术支撑。  相似文献   
35.
The transduction of cellular signals occurs through the modification of target molecules. Most of these modifications are transitory, thus the signal transduction pathways can be tightly regulated. Reactive nitrogen species are a group of compounds with different properties and reactivity. Some reactive nitrogen species are highly reactive and their interaction with macromolecules can lead to permanent modifications, which suggested they were lacking the specificity needed to participate in cell signaling events. However, the perception of reactive nitrogen species as oxidizers of macromolecules leading to general oxidative damage has recently evolved. The concept of redox signaling is now well established for a number of reactive oxygen and nitrogen species. In this context, the post-translational modifications introduced by reactive nitrogen species can be very specific and are active participants in signal transduction pathways. This review addresses the role of these oxidative modifications in the regulation of cell signaling events.  相似文献   
36.
37.
In vertebrate rods, photoisomerization of the 11-cis retinal chromophore of rhodopsin to the all-trans conformation initiates a biochemical cascade that closes cGMP-gated channels and hyperpolarizes the cell. All-trans retinal is reduced to retinol and then removed to the pigment epithelium. The pigment epithelium supplies fresh 11-cis retinal to regenerate rhodopsin. The recent discovery that tens of nanomolar retinal inhibits cloned cGMP-gated channels at low [cGMP] raised the question of whether retinoid traffic across the plasma membrane of the rod might participate in the signaling of light. Native channels in excised patches from rods were very sensitive to retinoid inhibition. Perfusion of intact rods with exogenous 9- or 11-cis retinal closed cGMP-gated channels but required higher than expected concentrations. Channels reopened after perfusing the rod with cellular retinoid binding protein II. PDE activity, flash response kinetics, and relative sensitivity were unchanged, ruling out pharmacological activation of the phototransduction cascade. Bleaching of rhodopsin to create all-trans retinal and retinol inside the rod did not produce any measurable channel inhibition. Exposure of a bleached rod to 9- or 11-cis retinal did not elicit channel inhibition during the period of rhodopsin regeneration. Microspectrophotometric measurements showed that exogenous 9- or 11-cis retinal rapidly cross the plasma membrane of bleached rods and regenerate their rhodopsin. Although dark-adapted rods could also take up large quantities of 9-cis retinal, which they converted to retinol, the time course was slow. Apparently cGMP-gated channels in intact rods are protected from the inhibitory effects of retinoids that cross the plasma membrane by a large-capacity buffer. Opsin, with its chromophore binding pocket occupied (rhodopsin) or vacant, may be an important component. Exceptionally high retinoid levels, e.g., associated with some retinal degenerations, could overcome the buffer, however, and impair sensitivity or delay the recovery after exposure to bright light.  相似文献   
38.
Yellow cyclometalatated ruthenium (II) complexes [Ru(o-X-2-py)(MeCN)4]PF6 (1, X = C6H4 (a) or 4-MeC6H3 (b)) react readily with 1,10-phenanthroline (LL) in MeCN to give brownish-red species cis-[Ru(o-X-2-py)(LL)(MeCN)2]PF6 in high yields. The same reaction of the same complexes under the same conditions with 2,2′-bipyridine results in a significant color change from yellow to brownish-orange suggesting a formation of new species. Surprisingly, X-ray structural studies of these two complexes showed that they are structurally indistinguishable from the starting complexes 1. Referred to as complexes 4a,b, the new compounds are slightly more stable in the air though their spectral characteristics in solution are similar to 1a,b. The diffuse reflectance spectroscopy is so far the only technique that indicated differences between 1 and 4.  相似文献   
39.
Analogues of the tetrahydroisoquinoline family of antitumor antibiotics, 3-epi-jorumycin (3) and 3-epi-renieramycin G (4), in addition to their respective parent natural products (-)-jorumycin (1) and (-)-renieramycin G (2) were evaluated against both human colon (HCT-116) and human lung (A549) cancer cell lines. (-)-Jorumycin (1) displayed potent growth inhibition with GI50 values in the low nanomolar range (1.9-24.3 nM), while compounds 2-4 were found to be substantially less cytotoxic (GI50 0.6-14.0 microM).  相似文献   
40.
Cone photoreceptors of the vertebrate retina terminate their response to light much faster than rod photoreceptors. However, the molecular mechanisms underlying this rapid response termination in cones are poorly understood. The experiments presented here tested two related hypotheses: first, that the rapid decay rate of metarhodopsin (Meta) II in red-sensitive cones depends on interactions between the 9-methyl group of retinal and the opsin part of the pigment molecule, and second, that rapid Meta II decay is critical for rapid recovery from saturation of red-sensitive cones after exposure to bright light. Microspectrophotometric measurements of pigment photolysis, microfluorometric measurements of retinol production, and single-cell electrophysiological recordings of flash responses of salamander cones were performed to test these hypotheses. In all cases, cones were bleached and their visual pigment was regenerated with either 11-cis retinal or with 11-cis 9-demethyl retinal, an analogue of retinal lacking the 9-methyl group. Meta II decay was four to five times slower and subsequent retinol production was three to four times slower in red-sensitive cones lacking the 9-methyl group of retinal. This was accompanied by a significant slowing of the recovery from saturation in cones lacking the 9-methyl group after exposure to bright (>0.1% visual pigment photoactivated) but not dim light. A mathematical model of the turn-off process of phototransduction revealed that the slower recovery of photoresponse can be explained by slower Meta decay of 9-demethyl visual pigment. These results demonstrate that the 9-methyl group of retinal is required for steric chromophore–opsin interactions that favor both the rapid decay of Meta II and the rapid response recovery after exposure to bright light in red-sensitive cones.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号