首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   431篇
  免费   26篇
  2021年   6篇
  2020年   4篇
  2019年   9篇
  2018年   7篇
  2017年   8篇
  2016年   12篇
  2015年   10篇
  2014年   17篇
  2013年   26篇
  2012年   31篇
  2011年   27篇
  2010年   9篇
  2009年   19篇
  2008年   28篇
  2007年   15篇
  2006年   14篇
  2005年   21篇
  2004年   17篇
  2003年   25篇
  2002年   16篇
  2001年   10篇
  2000年   11篇
  1999年   12篇
  1998年   7篇
  1997年   2篇
  1996年   3篇
  1995年   5篇
  1994年   2篇
  1993年   5篇
  1992年   12篇
  1991年   4篇
  1990年   8篇
  1989年   4篇
  1988年   11篇
  1987年   4篇
  1986年   5篇
  1985年   1篇
  1984年   3篇
  1983年   3篇
  1982年   2篇
  1981年   1篇
  1980年   1篇
  1979年   7篇
  1978年   3篇
  1977年   1篇
  1976年   1篇
  1975年   2篇
  1974年   2篇
  1973年   1篇
  1968年   1篇
排序方式: 共有457条查询结果,搜索用时 15 毫秒
81.
82.
83.
V-ATPase (VoV1) converts the chemical free energy of ATP into an ion-motive force across the cell membrane via mechanical rotation. This energy conversion requires proper interactions between the rotor and stator in VoV1 for tight coupling among chemical reaction, torque generation, and ion transport. We developed an Escherichia coli expression system for Enterococcus hirae VoV1 (EhVoV1) and established a single-molecule rotation assay to measure the torque generated. Recombinant and native EhVoV1 exhibited almost identical dependence of ATP hydrolysis activity on sodium ion and ATP concentrations, indicating their functional equivalence. In a single-molecule rotation assay with a low load probe at high ATP concentration, EhVoV1 only showed the “clear” state without apparent backward steps, whereas EhV1 showed two states, “clear” and “unclear.” Furthermore, EhVoV1 showed slower rotation than EhV1 without the three distinct pauses separated by 120° that were observed in EhV1. When using a large probe, EhVoV1 showed faster rotation than EhV1, and the torque of EhVoV1 estimated from the continuous rotation was nearly double that of EhV1. On the other hand, stepping torque of EhV1 in the clear state was comparable with that of EhVoV1. These results indicate that rotor-stator interactions of the Vo moiety and/or sodium ion transport limit the rotation driven by the V1 moiety, and the rotor-stator interactions in EhVoV1 are stabilized by two peripheral stalks to generate a larger torque than that of isolated EhV1. However, the torque value was substantially lower than that of other rotary ATPases, implying the low energy conversion efficiency of EhVoV1.  相似文献   
84.
The electrophysiological properties of cardiac muscle in KK/Ta mouse (hereafter referred to as KK mouse), an animal model of human non-insulin-dependent diabetes mellitus, were investigated, and the findings compared with those obtained from a non-diabetic control mouse (C57BL/6J mouse; referred to as B6 mouse). The ages of the B6 mice were 23.9 +/- 5.4 weeks (n = 24) and those of the KK mice used were 25.7 +/- 10.8 weeks (n = 34). The KK mice had mild obesity, hyperglycemia and hyperinsulinemia. Ventricular muscles from both mice were examined by light microscopy. Partial myocardial fibrosis and filament disorder in the ventricular muscles were found only in the KK mice. The resting membrane potential of the ventricular muscle was less negative in the KK mice than in the control mice. The maximum rate of rise in the upstroke of the action potential was significantly decreased in the KK mice compared with that of the control mice. These suggest a decrease in a time-independent K+ current (IK1) in the KK mice. The duration of the action potential (APD) at all levels of repolarization was significantly longer in the KK mice than in the B6 mice. A blocker of transient outward current (I(to)), 4-aminopyridine, significantly prolonged the APD of the B6 mice, but failed to prolong it in the KK mice, suggesting that Ito in the diabetic mice is very small. A Ca2+ channel blocker, CoCl2, dramatically lengthened all levels of APD in both groups, suggesting that there is no difference between B6 mice and KK mice in L-type Ca2+ current via Ca2+ channels. These suggest the malfunction or deficiency of ionic channels which carry, at least Ito and IK1 in diabetic mice.  相似文献   
85.
Two monoclonal antibodies (MAbs) reacting with spirosins from Enterobacteriaceae were obtained in a course of screening MAbs to spirosin from Yersinia enterocolitica SYT-11-72 (YE72). The antibodies were designated MAbs-S44 and S50. They were IgG2b and IgG2a, respectively, both with k light chains. On Western blotting after limited proteolysis of YE72 spirosin with Staphylococcus aureus V8 protease, they reacted markedly with peptide fragments of 27 and 35 kDa, suggesting the presence of an antigenic determinant on the fragments. When supernatant cell lysate from Escherichia coli K12 was chromatographed on DEAE-cellulose and Sepharose CL-6B columns successively, a 96-kDa protein with alcohol dehydrogenase (ADH) activity was always associated with reactivity to MAb-S50. These findings combined with N-terminal amino acid sequences clearly indicate the identity of spirosin to ADH in E. coli.  相似文献   
86.
To evaluate the effect of green nickel oxide (NiO) on the production of tumor necrosis factor (TNF) by alveolar macrophages, alveolar macrophages were exposed to NiO in vitro and in vivo. For the in vitro study, rats alveolar macrophages were incubated with NiO on a microplate for 24 h. TNF activity in the culture supernatant was determined by the L929 bioassay. Rats alveolar macrophages cultured with 100 and 200 μg/mL of NiO in vitro induced the production of TNF, however, it was not statistically significant compared with the control that was free from NiO exposure. For exposure in vivo, rats were divided into two groups. Five were exposed to a daily concentration of 11.7±2.0 mg/m3 of NiO for an 8-hr/d, 5 d/wk, for 4 wk, and five rats (control) were kept in a cage and not exposed to NiO. Bronchoalveolar lavage was performed and the recovered alveolar macrophages were incubated on a microplate for 24 h. TNF production by exposed alveolar macrophages was significantly higher than that of controls.  相似文献   
87.
Yamato, H., J. P. Sun, A. Churg, and J. L. Wright.Guinea pig pulmonary hypertension caused by cigarette smoke cannot be explained by capillary bed destruction. J. Appl.Physiol. 82(5): 1644-1653, 1997.Chronic exposureto cigarette smoke is known to produce pulmonary hypertension in humansand in animal models, but the etiology of this process iscontroversial. To evaluate whether alterations in the structure of thepulmonary capillary bed or the peribronchiolar arterioles could becorrelated with the pulmonary arterial pressure (Ppa), we examined thepulmonary vasculature in guinea pigs that had developed pulmonaryhypertension after being exposed to cigarette smoke for 6 mo. Thesmoke-exposed animals had a significant increased Ppa compared with thecontrol (air-exposed) animals (14.4 ± 2.4 vs. 9.9 ± 0.9 cmH2O). In the smoke-exposedanimals, there was an increased percentage of muscularized peribronchiolar arterioles (33.5 ± 5.8% smoke exposed vs. 56.1 ± 5.8% control), and the capillary diameter and density weresignificantly decreased in both the center and periphery of the lobule(center diameter 8.8 ± 1.9, periphery diameter 10.0 ± 2.0 µm,center density 79 ± 5, and periphery density 84 ± 4 in smokedexposed vs. center diameter 7.7 ± 1.9, periphery diameter 8.6 ± 2.0 µm, center density 73 ± 6, and periphery density 77 ± 6 in controls). Neither group showed any correlation betweenthese values and the Ppa. We conclude that although chronic exposure tocigarette smoke produces alteration of the capillary bed and pulmonaryarterioles secondary to emphysematous air-space enlargement, thesestructural findings cannot explain the increase in Ppa. It appears thatpulmonary hypertension due to chronic cigarette smoke exposure is aresult of a primary alteration of capillary or muscular arteriolarvascular structure but instead may be secondary to alterations of thedynamic properties of the vascular bed with subsequent increase invascular resistance.

  相似文献   
88.
89.
The mammalian peripheral stalk subunits of the vacuolar-type H+-ATPases (V-ATPases) possess several isoforms (C1, C2, E1, E2, G1, G2, G3, a1, a2, a3, and a4), which may play significant role in regulating ATPase assembly and disassembly in different tissues. To better understand the structure and function of V-ATPase, we expressed and purified several isoforms of the human V-ATPase peripheral stalk: E1G1, E1G2, E1G3, E2G1, E2G2, E2G3, C1, C2, H, a1NT, and a2NT. Here, we investigated and characterized the isoforms of the peripheral stalk region of human V-ATPase with respect to their affinity and kinetics in different combination. We found that different isoforms interacted in a similar manner with the isoforms of other subunits. The differences in binding affinities among isoforms were minor from our in vitro studies. However, such minor differences from the binding interaction among isoforms might provide valuable information for the future structural-functional studies of this holoenzyme.  相似文献   
90.
Elucidating the regulation of glucose-stimulated insulin secretion (GSIS) in pancreatic β cells is important for understanding and treating diabetes. The pancreatic β cell line, MIN6, retains GSIS but gradually loses it in long-term culture. The MIN6 subclone, MIN6c4, exhibits well-regulated GSIS even after prolonged culture. We previously used DNA microarray analysis to compare gene expression in the parental MIN6 cells and MIN6c4 cells and identified several differentially regulated genes that may be involved in maintaining GSIS. Here we investigated the potential roles of six of these genes in GSIS: Tmem59l (Transmembrane protein 59 like), Scgn (Secretagogin), Gucy2c (Guanylate cyclase 2c), Slc29a4 (Solute carrier family 29, member 4), Cdhr1 (Cadherin-related family member 1), and Celsr2 (Cadherin EGF LAG seven-pass G-type receptor 2). These genes were knocked down in MIN6c4 cells using lentivirus vectors expressing gene-specific short hairpin RNAs (shRNAs), and the effects of the knockdown on insulin expression and secretion were analyzed. Suppression of Tmem59l, Scgn, and Gucy2c expression resulted in significantly decreased glucose- and/or KCl-stimulated insulin secretion from MIN6c4 cells, while the suppression of Slc29a4 expression resulted in increased insulin secretion. Tmem59l overexpression rescued the phenotype of the Tmem59l knockdown MIN6c4 cells, and immunostaining analysis indicated that the TMEM59L protein colocalized with insulin and GM130, a Golgi complex marker, in MIN6 cells. Collectively, our findings suggested that the proteins encoded by Tmem59l, Scgn, Gucy2c, and Slc29a4 play important roles in regulating GSIS. Detailed studies of these proteins and their functions are expected to provide new insights into the molecular mechanisms involved in insulin secretion.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号