首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   180篇
  免费   16篇
  2024年   1篇
  2023年   4篇
  2022年   5篇
  2021年   9篇
  2020年   14篇
  2019年   6篇
  2018年   13篇
  2017年   9篇
  2016年   9篇
  2015年   11篇
  2014年   9篇
  2013年   19篇
  2012年   15篇
  2011年   8篇
  2010年   5篇
  2009年   5篇
  2008年   11篇
  2007年   4篇
  2006年   5篇
  2005年   3篇
  2004年   3篇
  2003年   7篇
  2002年   7篇
  2001年   2篇
  2000年   1篇
  1998年   1篇
  1997年   2篇
  1991年   1篇
  1990年   4篇
  1985年   1篇
  1984年   1篇
  1970年   1篇
排序方式: 共有196条查询结果,搜索用时 144 毫秒
41.
42.
43.
44.
The deadliest type of skin cancer, malignant melanoma, is also the reason for the majority of skin cancer-related deaths. The objective of this article was to investigate the efficiency of free caffeic acid phenethyl ester (CAPE) and liposomal CAPE in inducing apoptosis in melanoma cells (A375) in in vitro. CAPE was loaded into liposomes made up of hydrogenated soybean phosphatidylcholine, cholesterol, and 1,2-distearoyl-sn-glycero-3 phosphoethanolamine-N-[methoxy (polyethylene glycol)-2000], and their physicochemical properties were assessed. (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) test was performed for comparing the cytotoxicity of free CAPE and liposomal CAPE at dosages of 10, 15, 25, 50, 75 and the highest dose of 100 μg/mL for period of 24 and 48 h on A375 cell line to calculate IC50. Apoptosis and necrosis were evaluated in A375 melanoma cancer cells using flow cytometry. Atomic force microscopy was utilized to determine the nanomechanical attributes of the membrane structure of A375 cells. To determine whether there were any effects on apoptosis, the expression of PI3K/AKT1 and BAX/BCL2 genes was analyzed using the real-time polymerase chain reaction technique. According to our results, the maximum amount of drug release from nanoliposomes was determined to be 91% and the encapsulation efficiency of CAPE in liposomes was 85.24%. Also, the release of free CAPE was assessed to be 97%. Compared with liposomal CAPE, free CAPE showed a greater effect on reducing the cancer cell survival after 24 and 48 h. Therefore, IC50 values of A375 cells treated with free and liposomal CAPE were calculated as 47.34 and 63.39 μg/mL for 24 h. After 48 h of incubation of A375 cells with free and liposomal CAPE, IC50 values were determined as 30.55 and 44.83 μg/mL, respectively. The flow cytometry analysis revealed that the apoptosis induced in A375 cancer cells was greater when treated with free CAPE than when treated with liposomal CAPE. The highest nanomechanical changes in the amount of cell adhesion forces, and elastic modulus value were seen in free CAPE. Subsequently, the greatest decrease in PI3K/AKT1 gene expression ratio occurred in free CAPE.  相似文献   
45.
46.
Bone-marrow-derived mesenchymal stem cells and endothelial progenitor cells have some interesting biological properties that make them unique for cell therapy of degenerative and cardiovascular disorders. Although both cell populations have been already studied and used for their regenerative potentials, recently their special immunoregulatory features have brought much more attention. Mesenchymal stem cells and endothelial progenitor cells have both proangiogenic functions and have been shown to suppress the immune response, particularly T cell proliferation, activation, and cytokine production. This makes them suitable choices for allogeneic stem cell transplantation. Nevertheless, these two cells do not have equal immunoregulatory activities. Many elements including their extraction sources, age/passage, expression of different markers, secretion of bioactive mediators, and some others could change the efficiency of their immunosuppressive function. However, to our knowledge, no publication has yet compared mesenchymal stem cells and endothelial progenitor cells for their immunological interaction with T cells. This review aims to specifically compare the immunoregulatory effect of these two populations including their Tcell suppression, deactivation, cytokine production, and regulatory T cells induction capacities. Moreover, it evaluates the implications of the tumor necrosis factor alpha-tumor necrosis factor receptor 2 axis as an emerging immune checkpoint signaling pathway controlling most of their immunological properties.  相似文献   
47.
48.
The centrosome plays a critical role in various cellular processes including cell division and cilia formation, and deregulation of centrosome homeostasis is a hallmark feature of many human diseases. Here, we show that centrosomal protein of 78 kDa (Cep78) localizes to mature centrioles and directly interacts with viral protein R binding protein (VprBP). Although VprBP is a component of two distinct E3 ubiquitin ligases, EDD‐DYRK2‐DDB1VprBP and CRL4VprBP, Cep78 binds specifically to EDD‐DYRK2‐DDB1VprBP and inhibits its activity. A pool of EDD‐DYRK2‐DDB1VprBP is active at the centrosome and mediates ubiquitination of CP110, a novel centrosomal substrate. Deregulation of Cep78 or EDD‐DYRK2‐DDB1VprBP perturbs CP110 ubiquitination and protein stability, thereby affecting centriole length and cilia assembly. Mechanistically, ubiquitination of CP110 entails its phosphorylation by DYRK2 and binding to VprBP. Cep78 specifically impedes the transfer of ubiquitin from EDD to CP110 without affecting CP110 phosphorylation and binding to VprBP. Thus, we identify Cep78 as a new player that regulates centrosome homeostasis by inhibiting the final step of the enzymatic reaction catalyzed by EDD‐DYRK2‐DDB1VprBP.  相似文献   
49.

Background

Helicobacter pylori is the etiological agent for diseases ranging from chronic gastritis and peptic ulcer disease to gastric adenocarcinoma and primary gastric B-cell lymphoma. Emergence of resistance to antibiotics possesses a challenge to the effort to eradicate H. pylori using conventional antibiotic-based therapies. The molecular mechanisms that contribute to the resistance of these strains have yet to be identified and are important for understanding the evolutional pattern and selective pressure imposed by the environment.

Methods and Findings

H. pylori was isolated from 102 patients diagnosed with gastrointestinal diseases, who underwent endoscopy at University Malaya Medical Centre (UMMC). The isolates were tested for their susceptibility on eleven antibiotics using Etest. Based on susceptibility test, 32.3% of the isolates were found to have primary metronidazole resistance; followed by clarithromycin (6.8%) and fluoroquinolones (6.8%). To further investigate the resistant strains, mutational patterns of gene rdxA, frxA, gyrA, gyrB, and 23S rRNA were studied. Consistent with the previous reports, metronidazole resistance was prevalent in the local population. However, clarithromycin, fluoroquinolone and multi-drug resistance were shown to be emerging. Molecular patterns correlated well with phenotypic data. Interestingly, multi-drug resistant (MDR) strains were found to be associated with higher minimum inhibitory concentration (MIC) than their single-drug resistant (SDR) counterparts. Most importantly, clarithromycin-resistant strains were suggested to have a higher incidence for developing multi-drug resistance.

Conclusion

Data from this study highlighted the urgency to monitor closely the prevalence of antibiotic resistance in the Malaysian population; especially that of clarithromycin and multi-drug resistance. Further study is needed to understand the molecular association between clarithromycin resistance and multi-drug resistance in H. pylori. The report serves a reminder that a strict antibiotic usage policy is needed in Malaysia and other developing countries (especially those where H. pylori prevalence remained high).  相似文献   
50.
We used a murine model to assess the evolving biomechanical properties of tissue engineered vascular grafts (TEVGs) implanted in the arterial circulation. The initial polymeric tubular scaffold was fabricated from poly(lactic acid)(PLA) and coated with a 50:50 copolymer of poly(caprolactone) and poly(lactic acid)(P[PC/LA]). Following seeding with syngeneic bone marrow derived mononuclear cells, TEVGs (n=50) were implanted as aortic interposition grafts in wild-type mice and monitored serially using ultrasound. A custom biaxial mechanical testing device was used to quantify the in vitro circumferential and axial mechanical properties of grafts explanted at 3 or 7 months. At both times, TEVGs were much stiffer than native tissue in both directions. Repeated mechanical testing of some TEVGs treated with elastase or collagenase suggested that elastin did not contribute significantly to the overall stiffness whereas collagen did contribute. Traditional histology and immunostaining revealed smooth muscle cell layers, significant collagen deposition, and increasing elastin production in addition to considerable scaffold at both 3 and 7 months, which likely dominated the high stiffness seen in mechanical testing. These results suggest that PLA has inadequate in vivo degradation, which impairs cell-mediated development of vascular neotissue having properties closer to native arteries. Assessing contributions of individual components, such as elastin and collagen, to the developing neovessel is needed to guide computational modeling that may help to optimize the design of the TEVG.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号