首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   78篇
  免费   8篇
  国内免费   5篇
  2023年   1篇
  2022年   1篇
  2021年   6篇
  2020年   7篇
  2019年   7篇
  2018年   11篇
  2017年   1篇
  2016年   2篇
  2015年   7篇
  2014年   9篇
  2013年   6篇
  2012年   5篇
  2011年   4篇
  2010年   2篇
  2009年   1篇
  2008年   6篇
  2007年   6篇
  2004年   1篇
  2002年   2篇
  1999年   1篇
  1998年   1篇
  1997年   2篇
  1996年   1篇
  1995年   1篇
排序方式: 共有91条查询结果,搜索用时 702 毫秒
71.
Pancreatic cancer remains a devastating malignancy with a poor prognosis and is largely resistant to current therapies. To understand the resistance of pancreatic tumors to Fas death receptor-induced apoptosis, we investigated the molecular mechanisms of Fas-activated survival signaling in pancreatic cancer cells. We found that knockdown of the Fas-associated protein with death domain (FADD), the adaptor that mediates downstream signaling upon Fas activation, rendered Fas-sensitive MiaPaCa-2 and BxPC-3 pancreatic cells resistant to Fas-induced apoptosis. By contrast, Fas activation promoted the survival of the FADD knockdown MiaPaCa-2 and BxPC-3 cells in a concentration-dependent manner. The pharmacological inhibitor of ERK, PD98059, abrogated Fas-promoted cell survival in FADD knockdown MiaPaCa-2 and BxPC-3 cells. Furthermore, increased phosphorylation of Src was demonstrated to mediate Fas-induced ERK activation and cell survival. Immunoprecipitation of Fas in the FADD knockdown cells identified the presence of increased calmodulin, Src, and phosphorylated Src in the Fas-associated protein complex upon Fas activation. Trifluoperazine, a calmodulin antagonist, inhibited Fas-induced recruitment of calmodulin, Src, and phosphorylated Src. Consistently, trifluoperazine blocked Fas-promoted cell survival. A direct interaction of calmodulin and Src and their binding site were identified with recombinant proteins. These results support an essential role of calmodulin in mediating Fas-induced FADD-independent activation of Src-ERK signaling pathways, which promote survival signaling in pancreatic cancer cells. Understanding the molecular mechanisms responsible for the resistance of pancreatic cells to apoptosis induced by Fas-death receptor signaling may provide molecular insights into designing novel therapies to treat pancreatic tumors.  相似文献   
72.
MicroRNAs (miRNAs) and related polymorphisms have been implicated in the susceptibility to oesophageal squamous cell carcinoma (OSCC). In our study, three miRNA-related SNPs: rs6505162 A>C (pre-miRNA of miR-423), rs213210 A>G (3’UTR of miR-219-1) and rs7372209 C>T (5’UTR of miR-26a-1) were investigated in the Black and Mixed Ancestry population groups in South Africa. The potential cumulative effects of these SNPs, as well as gene-environment interactions were also analysed. In Blacks, rs6505162 A>C was associated with OSCC under dominant, additive and recessive models with odds ratios (ORs) 1.353, 1.404, and 2.858, respectively. This locus showed very strong interactions with smoke inhalation from burning wood or charcoal used for heating and cooking in very poorly ventilated areas (OR(GE)=7.855, P(GE)=9.17*10-10 in the Black group). Furthermore, the miR-423-3p level was 1.39 fold up-regulated in tumour tissues compared to the adjacent normal tissue (paired t-test P value 0.0087). SNP-SNP interaction between rs2132210 and rs7372209 was found in both Black and Mixed Ancestry subjects. The AArs213210-CTrs7372209 genotype had a protective effect on OSCC risk (in the Black, OR=0.229, P=0.012; and the Mixed Ancestry groups, OR=0.230, P=0.00014). This study is the first to link SNPs in miR-423 together with environmental smoke exposure to risk for developing OSCC.  相似文献   
73.
74.
Bcl—2基因加强表达对SK细胞编程死亡的效应   总被引:5,自引:0,他引:5  
TNF和OA诱发人神经母细胞瘤SK细胞编程死亡(PCD)。将编码Bcl-2完整蛋白质的cDNA植入pXJ 41neo载体中,由HCMV病毒启动子控制其表达。形成的正向(pBcl-2-S)及反向(pBcl-2-AS)表达质粒经转染导入SK细胞中获得稳定转染子。Western印迹表明正向转染子表达较大量的26kd Bcl-2蛋白,而反向转染子则不表达。增强表达的Bcl-2基因产物能抑制由TNF引发的PCD,但不影响由OA引发的PCD,从而证明Bcl-2基因产物抗细胞死亡效应的特异性。  相似文献   
75.
Due to the attraction of optimizing the electronic structure beyond chemical synthesis, molecular doping has recently aroused wide interest in the field of organic solar cells. However, the selection of limited dopants confines its successful application. Inspired by the Lewis base characteristics of the photovoltaic materials, the Lewis acid as novel dopant is introduced in organic solar cells. In both fullerene and nonfullerene based blends, Lewis acid doping leads to increased photovoltaic performance. Detailed experiments reveal that Lewis acid doping has a synergistic effect on modifying the polymer's electronic properties and the acceptor's nanostructure even at low doping concentration, and these are simultaneously responsible for the device improvements. Based on the mechanism studies, it is proposed that the Lewis acid‐doped polymers anions produce induced dipole on the acceptor, this increases the intermolecular interaction and facilitates the morphology optimization. It is believed that the synergistic effect by Lewis acid doping greatly expands the application of doped organic solar cells, in concert with other existing methods to yield higher efficiency values.  相似文献   
76.
Tranylcypromine moiety extracted from LSD1 inhibitors and 6-trifluoroethyl thienopyrimidine moiety from menin-MLL1 PPI inhibitors were merged to give new chemotypes for medicinal chemistry study. Among 15 new compounds prepared in this work, some exhibited nanomolar LSD1 activity and good selectivity over MAO-A/B, low micromolar menin-MLL1 PPI inhibitory activity, as well as submicromolar MV4-11 antiprofilative activities. Intracellular LSD1 engagement of compounds with higher enzymatic and antiproliferative activities was confirmed by CD86 mRNA up-regulation experiments.  相似文献   
77.
Although some epidemiological investigations showed a potential association between long-term exposure of extremely low frequency electromagnetic fields (ELF-EMF) and Alzheimer’s disease (AD), no reasonable mechanism can explain this association, and the related animal experiments are rare. In this study, ELF-EMF exposure (50Hz 400µT 60d) combined with D-galactose intraperitoneal (50mg/kg, q.d., 42d) and Aβ25–35 hippocampal (5μl/unilateral, bilateral, single-dose) injection was implemented to establish a complex rat model. Then the effects of ELF-EMF exposure on AD development was studied by using the Morris water maze, pathological analysis, and comparative proteomics. The results showed that ELF-EMF exposure delayed the weight gain of rats, and partially improved cognitive and clinicopathologic symptoms of AD rats. The differential proteomic analysis results suggest that synaptic transmission, oxidative stress, protein degradation, energy metabolism, Tau aggregation, and inflammation involved in the effects mentioned above. Therefore, our findings indicate that certain conditions of ELF-EMF exposure could delay the development of AD in rats.  相似文献   
78.
Different sizes of CdTe semiconductor nanoparticles were prepared in aqueous solution. These nanoparticles exhibit narrow fluorescence with full width at half-maximum (FWHM) of 35-45 nm that spans the visible spectrum, and they also have high PL quantum yield with high resistance to photodegradation. In addition, CdTe quantum dot (QD)-labelled microspheres, comprising polystyrene (PS) cores and CdTe/polyelectrolyte (PE) shells, were also prepared by the layer-by-layer technique in this paper. The optical properties of the CdTe nanoparticles and CdTe-labelled microspheres were investigated by UV-Visible absorption and luminescence spectroscopy, and fluorescence microscopy was employed for microscopic identification behaviour of the luminescent microspheres.  相似文献   
79.
80.
Phospholipase Cgamma2 (PLCgamma2) is an important signaling effector of multiple receptors in the immune system. Here we show that PLCgamma2-deficient mice displayed impaired lymph node organogenesis but normal splenic structure and Peyer's patches. Receptor activator of NF-kappaB ligand (RANKL) is a tumor necrosis factor family cytokine and is essential for lymph node organogenesis. Importantly, PLCgamma2 deficiency severely impaired RANKL signaling, resulting in marked reduction of RANKL-induced activation of MAPKs, p38 and JNK, but not ERK. The lack of PLCgamma2 markedly diminished RANKL-induced activation of NF-kappaB, AP-1, and NFATc1. Moreover, PLCgamma2 deficiency impaired RANKL-mediated biological function, leading to failure of the PLCgamma2-deficient bone marrow macrophage precursors to differentiate into osteoclasts after RANKL stimulation. Re-introduction of PLCgamma2 but not PLCgamma1 restores RANKL-mediated osteoclast differentiation of PLCgamma2-deficient bone marrow-derived monocyte/macrophage. Taken together, PLCgamma2 is essential for RANK signaling, and its deficiency leads to defective lymph node organogenesis and osteoclast differentiation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号