首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   57121篇
  免费   4612篇
  国内免费   4418篇
  2024年   86篇
  2023年   685篇
  2022年   1144篇
  2021年   3008篇
  2020年   2081篇
  2019年   2514篇
  2018年   2344篇
  2017年   1804篇
  2016年   2555篇
  2015年   3636篇
  2014年   4392篇
  2013年   4444篇
  2012年   5304篇
  2011年   4772篇
  2010年   2890篇
  2009年   2603篇
  2008年   2938篇
  2007年   2639篇
  2006年   2264篇
  2005年   1886篇
  2004年   1511篇
  2003年   1422篇
  2002年   1072篇
  2001年   909篇
  2000年   890篇
  1999年   810篇
  1998年   499篇
  1997年   454篇
  1996年   477篇
  1995年   422篇
  1994年   413篇
  1993年   326篇
  1992年   446篇
  1991年   324篇
  1990年   284篇
  1989年   260篇
  1988年   210篇
  1987年   194篇
  1986年   176篇
  1985年   154篇
  1984年   115篇
  1983年   122篇
  1982年   81篇
  1981年   45篇
  1980年   51篇
  1979年   63篇
  1976年   46篇
  1974年   54篇
  1973年   45篇
  1972年   53篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.
Li‐rich manganese based oxides (LRMOs) are considered an attractive high‐capacity cathode for advanced Li‐ion batteries; however, their poor cyclability and gradual voltage fading have hindered their practical applications. Herein, an efficient and facile strategy is proposed to stabilize the lattice structure of LRMOs by surface modification of polyacrylic acid (PAA). The PAA‐coated LRMO electrode exhibits only 104 mV of the voltage fading after 100 cycles and 88% capacity retention over 500 cycles. The structural stability is attributed to the carboxyl groups in PAA chains reacting with oxygen species on the surface of LRMO to form a uniform and tightly coated film, which significantly suppresses the dissolution of transition metal elements from the cathode materials into the electrolyte. Importantly, a H+/Li+ exchange reaction takes place between the LRMO and PAA, generating a proton‐doped surface layer. Density functional theory calculations and experimental evidence demonstrates that the H+ ions in the surface lattice efficiently inhibit the migration of transition metal ions, leading to a stabilized lattice structure. This surface modification approach may provide a new route to building a stable Li‐rich oxide cathode with high capacity retention and low voltage fading for practical Li‐ion battery applications.  相似文献   
992.
Output voltage and self‐discharge rate are two important performance indices for supercapacitors, which have long been overlooked, though these play a very significant role in their practical application. Here, a zinc anode is used to construct a zinc ion hybrid capacitor. Expanded operating voltage of the hybrid capacitor is obtained with novel electrolytes. In addition, significantly improved anti‐self‐discharge ability is achieved. The phosphorene‐based zinc ion capacitor exploiting a “water in salt” electrolyte with a working potential can reach 2.2 V, delivering 214.3 F g?1 after 5000 cycles. The operating voltage is further extended to 2.5 V through the use of an organic solvent as the electrolyte; the solvent is prepared by adding 0.2 m ZnCl2 into the tetraethylammonium tetrafluoroborate in propylene carbonate (Et4NBF4/PC) solvent, and it exhibits 105.9 F g?1 even after 9500 cycles. More importantly, the phosphorene‐based capacitors possess excellent anti‐self‐discharge performance. The capacitors retain 76.16% of capacitance after resting for 300 h. The practical application of the zinc ion capacitor is demonstrated through a flexible paper‐based printed microcapacitor. It is believed that the developed zinc ion capacitor can effectively resolve the severe self‐discharge problem of supercapacitors. Moreover, high‐voltage zinc ion capacitors provide more opportunities for the application of supercapacitors.  相似文献   
993.
The unique physicochemical properties of (2D) nanomaterials make them well‐suited for use in sustainable energy applications. Many of these materials can be further improved with vacancy engineering. This review details recent progress in the vacancy engineering of ultrathin 2D nanomaterials. For clarity, it mainly focuses on various ultrathin 2D materials in three categories: Xa&XaYb‐, MaXb‐, or MaXbYc‐structured materials. Recently developed vacancies in different types of ultrathin 2D materials, as well as their preparation and characterization, are described. Emphasis is placed on the potential electrochemical energy storage and conversion applications of these materials. This review considers the relationship between vacancy properties and material categories of various ultrathin 2D materials in terms of application requirements, preparation, and characterization techniques. The challenges and future outlook of this promising field are summarized.  相似文献   
994.
The chemical composition engineering of lead halide perovskites via a partial or complete replacement of toxic Pb with tin has been widely reported as a feasible process due to the suitable ionic radius of Sn and its possibility of existing in the +2 state. Interestingly, a complete replacement narrows the bandgap while a partial replacement gives an anomalous phenomenon involving a further narrowing of bandgap relative to the pure Pb and Sn halide perovskite compounds. Unfortunately, the merits of this anomalous behavior have not been properly harnessed. Although promising progress has been made to advance the properties and performance of Sn‐based perovskite systems, their photovoltaic (PV) parameters are still significantly inferior to those of the Pb‐based analogs. This review summarizes the current progress and challenges in the preparation, morphological and photophysical properties of Sn‐based halide perovskites, and how these affect their PV performance. Although it can be argued that the Pb halide perovskite systems may remain the most sought after technology in the field of thin film perovskite PV, prospective research directions are suggested to advance the properties of Sn halide perovskite materials for improved device performance.  相似文献   
995.
Lithium–sulfur (Li–S) batteries are promising candidates for energy storage, but suffer from capacity and cycling challenges caused by the serious shuttling effect of polysulfide (PS) ions. To address these issues, a sodium alginate (SA)‐derived affinity laminated chromatography membrane built‐in electrode is designed. This is the first attempt to utilize this type of membrane, which is widely used for the selective adsorption of proteins, in the battery field. An ordered multilayer structure throughout the electrode can easily be obtained, and the number of membrane layers can be also conveniently controlled by varying the cross‐linking time of SA. The PS shuttling effect is efficiently suppressed and the permeability of PSs is reduced by enveloping the carbon/sulfur powder in ultrathin laminated chromatography membranes. As a result, these designed electrodes deliver a superhigh initial capacity of 1492 mA h g?1, with a capacity retention almost 20% higher than the contrast. This low‐cost and easily mass‐producible strategy inspired by affinity chromatography is expected to effectively solve the PS shuttling problem toward high‐loading and long‐lifetime Li–S batteries in practice.  相似文献   
996.
997.
998.
The introduction of 3D wettable current collectors is one of the practical strategies toward realizing high reversibility of lithium (Li) metal anodes, yet its effect is usually insufficient owing to single electron‐conductive skeleton. Here, homogeneous Li deposition behavior and enhanced Coulombic efficiency is reported for electrochemically lithiated Cu3P nanowires, owing to the formation of a mixed ion/electron‐conducting skeleton (MIECS). In particular, by evaluating the Gibbs free energy change, the possible chemical reaction between Cu3P and molten Li is used to construct a MIECS containing Li3P and Cu–Li alloy phase. The successful conversion of Cu3P nanowires to Li3P and Cu–Li alloy nanocomposite not only greatly reduces the surface energy between molten Li and Cu3P, but also induces uniform Li stripping/plating behavior via balanced ion/electron transport. Thus, the as‐obtained Li@MIECS composite anode displays superior cycling stability in both symmetric cells and full cells. This work provides a promising option for the preparation of high‐performance composite Li anodes containing MIECS by thermally pre‐storing Li.  相似文献   
999.
Developing a titanium dioxide (TiO2)‐based anode with superior high‐rate capability and long‐term cycling stability is important for efficient energy storage. Herein, a simple one‐step approach for fabricating blue TiO2 nanoparticles with oxygen vacancies is reported. Oxygen vacancies can enlarge lattice spaces, lower charge transfer resistance, and provide more active sites in TiO2 lattices. As a result, this blue TiO2 electrode exhibits a highly reversible capacity of 50 mAh g?1 at 100 C (16 800 mA g?1) even after 10 000 cycles, which is attributable to the combination of surface capacitive process and remarkable diffusion‐controlled insertion revealed by the kinetic analysis. The strategy of employing oxygen‐deficient nanoparticles may be extended to the design of other robust semiconductor materials as electrodes for energy storage.  相似文献   
1000.
Defect state passivation and conductivity of materials are always in opposition; thus, it is unlikely for one material to possess both excellent carrier transport and defect state passivation simultaneously. As a result, the use of partial passivation and local contact strategies are required for silicon solar cells, which leads to fabrication processes with technical complexities. Thus, one material that possesses both a good passivation and conductivity is highly desirable in silicon photovoltaic (PV) cells. In this work, a passivation‐conductivity phase‐like diagram is presented and a conductive‐passivating‐carrier‐selective contact is achieved using PEDOT:Nafion composite thin films. A power conversion efficiency of 18.8% is reported for an industrial multicrystalline silicon solar cell with a back PEDOT:Nafion contact, demonstrating a solution‐processed organic passivating contact concept. This concept has the potential advantages of omitting the use of conventional dielectric passivation materials deposited by costly high‐vacuum equipment, energy‐intensive high‐temperature processes, and complex laser opening steps. This work also contributes an effective back‐surface field scheme and a new hole‐selective contact for p‐type and n‐type silicon solar cells, respectively, both for research purposes and as a low‐cost surface engineering strategy for future Si‐based PV technologies.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号