首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   21746篇
  免费   1655篇
  国内免费   1626篇
  25027篇
  2024年   64篇
  2023年   258篇
  2022年   681篇
  2021年   1200篇
  2020年   784篇
  2019年   957篇
  2018年   939篇
  2017年   692篇
  2016年   956篇
  2015年   1317篇
  2014年   1598篇
  2013年   1748篇
  2012年   1929篇
  2011年   1788篇
  2010年   1104篇
  2009年   1001篇
  2008年   1144篇
  2007年   1011篇
  2006年   869篇
  2005年   743篇
  2004年   571篇
  2003年   551篇
  2002年   445篇
  2001年   324篇
  2000年   325篇
  1999年   326篇
  1998年   189篇
  1997年   170篇
  1996年   182篇
  1995年   176篇
  1994年   158篇
  1993年   118篇
  1992年   161篇
  1991年   117篇
  1990年   111篇
  1989年   78篇
  1988年   54篇
  1987年   46篇
  1986年   37篇
  1985年   36篇
  1984年   19篇
  1983年   16篇
  1982年   16篇
  1981年   7篇
  1980年   4篇
  1979年   2篇
  1978年   1篇
  1975年   2篇
  1966年   1篇
  1950年   1篇
排序方式: 共有10000条查询结果,搜索用时 21 毫秒
951.
Metformin, a widely prescribed first‐line drug for the treatment of type II diabetes mellitus, has been shown to extend lifespan and delay the onset of age‐related diseases. The precisely mechanisms by which these effects are realized remain elusive. We find that metformin exposure is restricted to adults, which is sufficient to extend lifespan. However, limiting metformin exposure to the larvae has no significant effect on Caenorhabditis elegans longevity. Here, we show that after metformin treatment, the level of S‐adenosylmethionine (SAM) is reduced in adults but not in the larvae. Potential mechanisms by which reduced SAM might increase lifespan include altering the histone methylation. However, the molecular connections between metformin, SAM limitation, methyltransferases, and healthspan‐associated phenotypes are unclear. Through genetic screening of C. elegans, we find that metformin promotes the healthspan through an H3K4 methyltransferase/demethylase complex to downregulate the targets, including mTOR and S6 kinase. Thus, our studies provide molecular links between meformin, SAM limitation, histone methylation, and healthspan and elucidate the mode action of metformin‐regulated healthspan extension will boost its therapeutic application in the treatment of human aging and age‐related diseases.  相似文献   
952.
953.
Current treatments for meibomian gland dysfunction have several limitations, creating a necessity for other advanced treatment options. The purpose of this study is to determine the effectiveness of focused ultrasound stimulation for the treatment of dry eye disease caused by meibomian gland dysfunction. An in vivo study of nine Dutch Belted rabbits was conducted with focused ultrasound stimulation of the meibomian glands. A customized line-focused ultrasonic transducer was designed for treatment. Fluorescein imaging, Schirmer’s test, and Lipiview II ocular interferometer were used to quantify outcomes from three aspects: safety, tear production, and lipid layer thickness. Both tear secretion and lipid layer thickness improved following ultrasound treatment. Five to 10 min after the ultrasound treatment, the mean values of lipid layer thickness increased from 55.33 ± 11.15 nm to 95.67 ± 22.77 nm (p < 0.05), while the mean values measured with the Schirmer’s test increased from 2.0 ± 2.3 to 7.2 ± 4.3 (p < 0.05). Positive effects lasted more than three weeks. Adverse events such as redness, swelling, and mild burn, occurred in two rabbits in preliminary experiments when the eyelids sustained a temperature higher than 42°C. No serious adverse events were found. The results suggest that ultrasound stimulation of meibomian glands can improve both tear production and lipid secretion. Ultimately, ultrasound stimulation has the potential to be an option for the treatment of evaporative dry eye disease caused by meibomian gland dysfunction.  相似文献   
954.
Ferroptosis and neuroinflammation play crucial roles in Alzheimer''s disease (AD) pathophysiology. Forsythoside A (FA), the main constituent of Forsythia suspensa (Thunb.) Vahl., possesses anti-inflammatory, antibacterial, antioxidant, and neuroprotective properties. The present study aimed to investigate the potential role of FA in AD neuropathology using male APP/PS1 double transgenic AD mice, Aβ1-42-exposed N2a cells, erastin-stimulated HT22 cells, and LPS-induced BV2 cells. FA treatment significantly improved mitochondrial function and inhibited lipid peroxidation in Aβ1-42-exposed N2a cells. In LPS-stimulated BV2 cells, FA treatment decreased the formation of the pro-inflammatory factors IL-6, IL-1β, and NO. In male APP/PS1 mice, FA treatment ameliorated memory and cognitive impairments and suppressed Aβ deposition and p-tau levels in the brain. Analyses using proteomics, immunohistochemistry, ELISA, and western blot revealed that FA treatment significantly augmented dopaminergic signaling, inhibited iron deposition and lipid peroxidation, prevented the activation of IKK/IκB/NF-κB signaling, reduced the secretion of pro-inflammatory factors, and promoted the production of anti-inflammatory factors in the brain. FA treatment exerted anti-ferroptosis and anti-neuroinflammatory effects in erastin-stimulated HT22 cells, and the Nrf2/GPX4 axis played a key role in these effects. Collectively, these results demonstrate the protective effects of FA and highlight its therapeutic potential as a drug component for AD treatment.  相似文献   
955.
956.
957.
Host defense systems employ posttranslational modifications to protect against invading pathogens. Here, we found that protein inhibitor of activated STAT 1 (PIAS1) interacts with the nucleoprotein (NP), polymerase basic protein 1 (PB1), and polymerase basic protein 2 (PB2) of influenza A virus (IAV). Lentiviral-mediated stable overexpression of PIAS1 dramatically suppressed the replication of IAV, whereas siRNA knockdown or CRISPR/Cas9 knockout of PIAS1 expression significantly increased virus growth. The expression of PIAS1 was significantly induced upon IAV infection in both cell culture and mice, and PIAS1 was involved in the overall increase in cellular SUMOylation induced by IAV infection. We found that PIAS1 inhibited the activity of the viral RNP complex, whereas the C351S or W372A mutant of PIAS1, which lacks the SUMO E3 ligase activity, lost the ability to suppress the activity of the viral RNP complex. Notably, the SUMO E3 ligase activity of PIAS1 catalyzed robust SUMOylation of PB2, but had no role in PB1 SUMOylation and a minimal role in NP SUMOylation. Moreover, PIAS1-mediated SUMOylation remarkably reduced the stability of IAV PB2. When tested in vivo, we found that the downregulation of Pias1 expression in mice enhanced the growth and virulence of IAV. Together, our findings define PIAS1 as a restriction factor for the replication and pathogenesis of IAV.  相似文献   
958.
BackgroundOpen and endoscopic thoracic surgeries improve surgical exposure by One-lung ventilation (OLV). The aim of this study was to investigate the effects of different doses of dexmedetomidine on inflammatory response, oxidative stress, cerebral tissue oxygen saturation (SctO2) and intrapulmonary shunt in patients undergoing one-lung ventilation (OLV).MethodsSeventy-five patients undergoing open pulmonary lobectomy in our hospital from January 2016 to December 2017 were enrolled and randomly divided into high-dose dexmedetomidine group (group D1, 1 mg/kg, n=25), low-dose dexmedetomidine group (group D2, 0.5 mg/kg, n=25) and control group (group C, n=25). Then, arterial blood and internal jugular venous blood were taken before anesthesia induction (T0) and at 15 min after twolung ventilation (T1) and 5 min (T2) and 30 min (T3) after OLV for later use. Next, the changes in hemodynamic parameters [mean arterial pressure (MAP), heart rate (HR) and pulse oxygen saturation (SpO2)] of patients were observed in each group. Enzyme-linked immunosorbent assay (ELISA) was carried out to detect serum inflammatory factors such as interleukin-6 (IL-6) and tumor necrosis factor-alpha (TNF-α) and oxidative stress indicators [superoxide dismutase (SOD) and malondialdehyde (MDA)]. The changes in SctO2, arterial partial pressure of oxygen (PaO2) and intrapulmonary shunt Qs/Qt (a measurement of pulmonary shunt: right-to-left shunt fraction) were observed. Additionally, the changes in lung function indicators like lung dynamic compliance (Cdyn) and airway peak pressure (Ppeak) were determined.ResultsThere were no statistically significant differences in the MAP, HR and SpO2 among three groups at each observation time point (P>0.05). At T2 and T3, the levels of serum IL-6, TNF-α and IL-8 were obviously decreased in group D1 and D2 compared with those in group C (P<0.05), and the decreases in group D1 were overtly larger than those in group D2, and the decreases at T3 were markedly greater than those at T2 (P<0.05). In comparison with group C, group D1 and D2 had notably reduced levels of serum reactive oxygen species (ROS) and MDA (P<0.05) and remarkably increased SOD content (P<0.05) at T2 and T3, and the effects were markedly better in group D1 than those in group D2. Besides, they were significantly superior at T3 to those at T2 (P<0.05). The SctO2 in group D1 and D2 was evidently lowered at T2 and T3 compared with that at T0, and the decrease in group D1 was distinctly smaller than that in group D2 (P<0.05). The Qs/Qt was significantly lower in group D1 and D2 than that in group C at T2 and T3 (P<0.05), while the PaO2 content was notably raised (P<0.05), and the decrease and increase were significantly larger in group D1 than those in group D2, and they were obviously greater at T3 to those at T2 (P<0.05). At T0 and T1, no significant differences were detected in the Cdyn, Pplat and Ppeak among three groups. At T2 and T3, the Cdyn was significantly elevated, while the Pplat and Ppeak overtly declined (P<0.05), and group D1 had greater changes in comparison with group D2, and the changes were obviously more evident at T3 to those at T2 (P<0.05).ConclusionsDexmedetomidine effectively ameliorates inflammatory response and oxidative stress, lowers oxygenation, Qs/Qt and the decrease in SctO2 and improves lung function during OLV, with good efficacy.  相似文献   
959.
960.
Cancer cells frequently undergo metabolic reprogramming to support tumorigenicity and malignancy, which is recognized as a hallmark of cancer. In addition to glycolysis and glutaminolysis, alterations in fatty acid (FA) metabolism have received increasing concerns in the past few years. Recently, accumulating evidence has shown that fatty acid β-oxidation (FAO) is abnormally activated in various tumors, which is associated with the machinery of proliferation, stemness, metastasis, and radiochemotherapeutic resistance of cancer cells. Acyl-CoA synthetases 3 (ACSL3) belongs to a family of enzymes responsible for converting free long-chain FAs into fatty acyl-CoA esters, which act as substrates both for lipid synthesis and FAO.Here, we demonstrate that transforming growth factor beta 1 (TGFβ1) induces the up-regulation of ACSL3 through sterol regulatory element-binding protein 1 (SREBP1) signaling to promote energy metabolic reprogramming in colorectal carcinoma (CRC) cells. ACSL3 mediates the epithelial mesenchymal transition (EMT) and metastasis of CRC cells by activation of FAO pathway to produce ATP and reduced nicotinamide adenine dinucleotide phosphate (NADPH), which sustain redox homeostasis and fuel cancer cells for invasion and distal metastasis. Thus, targeting ACSL3 and FAO metabolic pathways might be exploited for therapeutic gain for CRC and other FAs- addicted cancers.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号