首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4650篇
  免费   393篇
  国内免费   448篇
  2024年   6篇
  2023年   70篇
  2022年   82篇
  2021年   243篇
  2020年   178篇
  2019年   272篇
  2018年   220篇
  2017年   157篇
  2016年   204篇
  2015年   316篇
  2014年   350篇
  2013年   362篇
  2012年   438篇
  2011年   455篇
  2010年   240篇
  2009年   197篇
  2008年   219篇
  2007年   215篇
  2006年   191篇
  2005年   162篇
  2004年   130篇
  2003年   108篇
  2002年   92篇
  2001年   79篇
  2000年   44篇
  1999年   57篇
  1998年   42篇
  1997年   54篇
  1996年   46篇
  1995年   30篇
  1994年   37篇
  1993年   18篇
  1992年   27篇
  1991年   24篇
  1990年   16篇
  1989年   15篇
  1988年   12篇
  1987年   16篇
  1986年   7篇
  1985年   19篇
  1983年   4篇
  1980年   2篇
  1976年   4篇
  1975年   3篇
  1974年   3篇
  1973年   4篇
  1972年   6篇
  1971年   5篇
  1970年   2篇
  1967年   2篇
排序方式: 共有5491条查询结果,搜索用时 328 毫秒
71.
Naturally occurring CD4+CD25+ regulatory T cells (Tregs) are required to limit immune‐induced pathology and to maintain homeostasis during the early‐phase of sepsis. This study aimed to investigate the role of interleukin (IL)‐38, a newly described member of the IL‐1 cytokine family, in mediated immune response of CD4+CD25+ Tregs in sepsis. Here, we provide evidence that expressions of IL‐38 and its receptor were detected in murine CD4+CD25+ Tregs. Stimulation of CD4+CD25+ Tregs with LPS markedly up‐regulated the expression of IL‐38. Treatment with rmIL‐38 dramatically enhanced the immunosuppressive activity of CD4+CD25+ Tregs after LPS stimulation and in septic mice induced by CLP, resulting in amplification of helper T cell (Th) 2 response and reduction in the proliferation of effector T cells. These effects were robustly abrogated when anti–IL‐38 antibody was administered. Administration of rmIL‐38 improved the survival rate of CLP mice. In addition, CD4+CD25+ Tregs depletion before the onset of sepsis obviously abolished IL‐38–mediated protective response. These findings suggest that IL‐38 enhances the immunosuppressive activity of CD4+CD25+ Tregs, which might contribute to the improvement of host immune function and prognosis in the setting of sepsis.  相似文献   
72.
Leptin is well acknowledged as an anorexigenic hormone that plays an important role in feeding control. Hypothalamic GABA system plays a significant role in leptin regulation on feeding and metabolism control. However, the pharmacological relationship of leptin and GABA receptor is still obscure. Therefore, we investigated the effect of leptin or combined with baclofen on the food intake in fasted mice. We detected the changes in hypothalamic c‐Fos expression, hypothalamic TH, POMC and GAD67 expression, plasma insulin, POMC and GABA levels to demonstrate the mechanisms. We found that leptin inhibit fasting‐induced increased food intake and activated hypothalamic neurons. The inhibitory effect on food intake induced by leptin in fasted mice can be reversed by pretreatment with baclofen. Baclofen reversed leptin's inhibition on c‐Fos expression of PAMM in fasted mice. Therefore, these results indicate that leptin might inhibit fasting‐triggered activation of PVN neurons via presynaptic GABA synaptic functions which might be partially blocked by pharmacological activating GABA‐B. Our findings identify the role of leptin in the regulation of food intake.  相似文献   
73.
Glioblastoma multiforme (GBM) is the most common malignant tumour in the adult brain and hard to treat. Nuclear factor κB (NF‐κB) signalling has a crucial role in the tumorigenesis of GBM. EGFR signalling is an important driver of NF‐κB activation in GBM; however, the correlation between EGFR and the NF‐κB pathway remains unclear. In this study, we investigated the role of mucosa‐associated lymphoma antigen 1 (MALT1) in glioma progression and evaluated the anti‐tumour activity and effectiveness of MI‐2, a MALT1 inhibitor in a pre‐clinical GBM model. We identified a paracaspase MALT1 that is involved in EGFR‐induced NF‐kB activation in GBM. MALT1 deficiency or inhibition significantly affected the proliferation, survival, migration and invasion of GBM cells both in vitro and in vivo. Moreover, MALT1 inhibition caused G1 cell cycle arrest by regulating multiple cell cycle–associated proteins. Mechanistically, MALTI inhibition blocks the degradation of IκBα and prevents the nuclear accumulation of the NF‐κB p65 subunit in GBM cells. This study found that MALT1, a key signal transduction cascade, can mediate EGFR‐induced NF‐kB activation in GBM and may be potentially used as a novel therapeutic target for GBM.  相似文献   
74.
Potassium ion hybrid capacitors have great potential for large‐scale energy devices, because of the high power density and low cost. However, their practical applications are hindered by their low energy density, as well as electrolyte decomposition and collector corrosion at high potential in potassium bis(fluoro‐sulfonyl)imide‐based electrolyte. Therefore, anode materials with high capacity, a suitable voltage platform, and stability become a key factor. Here, N‐doping carbon‐coated FeSe2 clusters are demonstrated as the anode material for a hybrid capacitor, delivering a reversible capacity of 295 mAh g?1 at 100 mA g?1 over 100 cycles and a high rate capability of 158 mAh g?1 at 2000 mA g?1 over 2000 cycles. Meanwhile, through density functional theory calculations, in situ X‐ray diffraction, and ex situ transmission electron microscopy, the evolution of FeSe2 to Fe3Se4 for the electrochemical reaction mechanism is successfully revealed. The battery‐supercapacitor hybrid using commercial activated carbon as the cathode and FeSe2/N‐C as the anode is obtained. It delivers a high energy density of 230 Wh kg?1 and a power density of 920 W kg?1 (the energy density and power density are calculated based on the total mass of active materials in the anode and cathode).  相似文献   
75.
Defect state passivation and conductivity of materials are always in opposition; thus, it is unlikely for one material to possess both excellent carrier transport and defect state passivation simultaneously. As a result, the use of partial passivation and local contact strategies are required for silicon solar cells, which leads to fabrication processes with technical complexities. Thus, one material that possesses both a good passivation and conductivity is highly desirable in silicon photovoltaic (PV) cells. In this work, a passivation‐conductivity phase‐like diagram is presented and a conductive‐passivating‐carrier‐selective contact is achieved using PEDOT:Nafion composite thin films. A power conversion efficiency of 18.8% is reported for an industrial multicrystalline silicon solar cell with a back PEDOT:Nafion contact, demonstrating a solution‐processed organic passivating contact concept. This concept has the potential advantages of omitting the use of conventional dielectric passivation materials deposited by costly high‐vacuum equipment, energy‐intensive high‐temperature processes, and complex laser opening steps. This work also contributes an effective back‐surface field scheme and a new hole‐selective contact for p‐type and n‐type silicon solar cells, respectively, both for research purposes and as a low‐cost surface engineering strategy for future Si‐based PV technologies.  相似文献   
76.
Wind is one of the most important sources of green energy, but the current technology for harvesting wind energy is only effective when the wind speed is beyond 3.5–4.0 m s?1. This is mainly due to the limitation that the electromagnetic generator works best at high frequency. This means that light breezes cannot reach the wind velocity threshold of current wind turbines. Here, a high‐performance triboelectric nanogenerator (TENG) for efficiently harvesting energy from an ambient gentle wind, especially for speeds below 3 m s?1 is reported, by taking advantage of the relative high efficiency of TENGs at low‐frequency. Attributed to the multiplied‐frequency vibration of ultra‐stretchable and perforated electrodes, an average output of 20 mW m?3 can be achieved with inlet wind speed of 0.7 m s?1, while an average energy conversion efficiency of 7.8% at wind speed of 2.5 m s?1 is reached. A self‐charging power package is developed and the applicability of the TENG in various light breezes is demonstrated. This work demonstrates the advantages of TENG technology for breeze energy exploitation and proposes an effective supplementary approach for current employed wind turbines and micro energy structure.  相似文献   
77.
78.
In the present study, a new hepatic tissue‐origin cell line from European eel Anguilla anguilla has been developed and characterized. This cell line designated EL has been maintained in Leibovitz L‐15 supplemented with 10% fetal bovine serum over 72 months, and subcultured more than 90 times. The EL cell line consisted predominantly of fibroblast‐like cells, which could survive over 100 days in vitro, and could grow at 15–32°C. The optimum temperature for growth was 27°C. The chromosome analysis revealed a modal diploid karyotype of 2n = 38. The origin of this cell line was confirmed by the 18S recombinant (r)RNA sequencing. The susceptibility test indicated significant cytopathic effects in the EL cells with regard to the Rana grylio virus and the Herpesvirus anguillae. The viral replication was confirmed by transmission electron microscopy and polymerase chain reaction analysis. Following poly (I:C) exposure, the expression levels of the immune‐related molecules interferon regulatory factor‐7 (irf7) and transforming growth factor‐β (TGF‐β) were downregulated in EL cells, whereas the expression levels of the rf3 and the cytochrome P450 (CYP450) were upregulated. All four genes were significantly upregulated following inflammation by lipopolysaccharide (LPS). These data suggested the application of EL cell line for viral identification, as well as for immunodiagnosis and pharmacological targeting.  相似文献   
79.
Chen  S. L.  Zhang  L. P.  Cai  X. M.  Bian  L.  Luo  Z. X.  Li  Z. Q.  Ge  L. G.  Chen  Z. M.  Xin  Z. J. 《Russian Journal of Plant Physiology》2020,67(3):572-580
Russian Journal of Plant Physiology - The tea geometrid Ectropis grisescens is an important pest of tea plant (Camellia sinensis (L.) O. Kuntze). It feeds on the new leaves and tender...  相似文献   
80.
Quorum sensing (QS) is a ubiquitous cell–cell communication mechanism in microbes that coordinates population‐level cell behaviors, such as biofilm production, virulence, swarming motility, and bacterial persistence. Efforts to engineer QS systems to take part in metabolic network regulation represent a promising strategy for synthetic biology and pathway engineering. Recently, design, construction, and implementation of QS circuits for programmed control of bacterial phenotypes and metabolic pathways have gained much attention, but have not been reviewed recently. In this article, the architectural organizations and genetic contributions of the naturally occurring QS components to understand the mechanisms are summarized. Then, the most recent progress in application of QS toolkits to develop synthetic networks for novel cell behaviors creation and metabolic pathway engineering is highlighted. The current challenges in large‐scale application of these QS circuits in synthetic biology and metabolic engineering fields are discussed and future perspectives for further engineering efforts are provided.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号