首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   18276篇
  免费   2033篇
  国内免费   3678篇
  2024年   63篇
  2023年   347篇
  2022年   555篇
  2021年   1009篇
  2020年   759篇
  2019年   962篇
  2018年   765篇
  2017年   683篇
  2016年   834篇
  2015年   1199篇
  2014年   1456篇
  2013年   1451篇
  2012年   1784篇
  2011年   1681篇
  2010年   1119篇
  2009年   1037篇
  2008年   1205篇
  2007年   1062篇
  2006年   983篇
  2005年   888篇
  2004年   756篇
  2003年   718篇
  2002年   649篇
  2001年   406篇
  2000年   352篇
  1999年   237篇
  1998年   154篇
  1997年   129篇
  1996年   116篇
  1995年   71篇
  1994年   108篇
  1993年   62篇
  1992年   60篇
  1991年   45篇
  1990年   47篇
  1989年   40篇
  1988年   36篇
  1987年   28篇
  1986年   21篇
  1985年   35篇
  1984年   16篇
  1983年   19篇
  1982年   19篇
  1981年   4篇
  1979年   4篇
  1978年   2篇
  1977年   2篇
  1973年   2篇
  1971年   2篇
  1950年   2篇
排序方式: 共有10000条查询结果,搜索用时 234 毫秒
981.
982.
Diabetic retinopathy (DR) remains the leading cause of blindness in adults with diabetes mellitus. Numerous microRNAs (miRNAs) have been identified to modulate the pathogenesis of DR. The main purpose of this study was to evaluate the potential roles of miR-455-5p in high glucose (HG)-treated retinal pigment epithelial (RPE) cells and underlying mechanisms. Our present investigation discovered that the expression of miR-455-5p was apparently downregulated in ARPE-19 cells stimulated with HG. In addition, forced expression of miR-455-5p markedly enhanced cell viability and restrained HG-induced apoptosis accompanied by decreased BCL2-associated X protein (Bax)/B-cell leukemia/lymphoma 2 (Bcl-2) ratio and expression of apoptotic marker cleaved caspase-3 during HG challenged. Subsequently, augmentation of miR-455-5p remarkably alleviated HG-triggered oxidative stress injury as reflected by decreased the production of intracellular reactive oxygen species (ROS) and malondialdehyde (MDA) content as well as NADPH oxidase 4 expression, concomitant with enhanced the activities of superoxide dismutase, catalase, and GPX stimulated with HG. Furthermore, enforced expression of miR-455-5p effectively ameliorated HG-stimulated inflammatory response as exemplified by repressing the secretion of inflammatory cytokines interleukin 1β (IL-1β), IL-6, and tumour necrosis factor-α in ARPE-19 cells challenged by HG. Most importantly, we successfully identified suppressor of cytokine signaling 3 (SOCS3) as a direct target gene of miR-455-5p, and miR-455-5p negatively regulated the expression of SOCS3. Mechanistically, restoration of SOCS3 abrogated the beneficial effects of miR-455-5p on apoptosis, accumulation of ROS, and inflammatory factors production in response to HG. Taken together, these findings demonstrated that miR-455-5p relieved HG-induced damage through repressing apoptosis, oxidant stress, and inflammatory response by targeting SOCS3. The study gives evidence that miR-455-5p may serve as a new potential therapeutic agent for DR treatment.  相似文献   
983.
Cervical cancer is the fourth most common malignancy in women worldwide and cervical squamous cell carcinoma (CESC) is the most common histological type of cervical cancer. The dysregulation of genes plays a significant role in cancer. In the present study, we screened out differentially expressed genes (DEGs) of CESC in the GSE63514 data set from the Gene Expression Omnibus database. An integrated bioinformatics analysis was used to select hub genes, as well as to investigate their related prognostic signature, functional annotation, methylation mechanism, and candidate molecular drugs. As a result, a total of 1907 DEGs were identified (944 were upregulated and 963 were downregulated). In the protein–protein interaction network, three hub modules and 30 hub genes were identified. And two hub modules and 116 hub genes were screened out from four CESC-related modules by the weighted gene coexpression network analysis. The gene ontology term enrichment analysis and Kyoto encyclopedia of genes and genomes pathway analysis were performed to better understand functions and pathways. Genes with a significant prognostic value were found by prognostic signature analysis. And there were five genes (EPHX2, CHAF1B, KIAA1524, CDC45, and RMI2) identified as significant CESC-associated genes after expression validation and survival analysis. Among them, EPHX2 and RMI2 were noted as two novel key genes for the CESC-associated methylation and expression. In addition, four candidate small molecule drugs for CESC (camptothecin, resveratrol, vorinostat, and trichostatin A) were defined. Further studies are required to explore these significant CESC-associated genes for their potentiality in diagnosis, prognosis, and targeted therapy.  相似文献   
984.
Pyroptosis, a type of programmed cell death mediated by gasdermin, is characterized by the swelling and rupture of cells, release of cellular contents and a strong inflammatory response, which is critical for controlling microbial infection. Pattern recognition receptors recognize the intracellular and extracellular pathogenic microbial components and stimulate the organism's inflammatory response by activating the pyroptosis signaling pathway and releasing interleukin-1β (IL-1β), IL-18, and other inflammatory factors to promote pathogen clearance and prevent infection. In the process of continuous evolution, pathogens have developed multiple strategies to modulate the occurrence of pyroptosis and thus enhance their ability to induce disease; that is, the competition between host cells and pathogens controls the occurrence of pyroptosis. Competition can directly affect tissue inflammation outbreaks and even alter cell survival. Studies have shown that various bacterial infections, including Shigella flexneri, Salmonella, Listeria monocytogenes, and Legionella pneumophila, can lead to pyroptosis. Pyroptosis is associated with the occurrence and development of various diseases caused by microbial infection, and the identification of molecules related to the pyroptosis signaling pathway may provide new drug targets for the treatment of related diseases. This study reviews the molecular mechanisms of pyroptosis and the role of pyroptosis in microbial infection-related diseases.  相似文献   
985.
986.
Bile duct cancer (BDC), also known as cholangiocarcinoma, is a highly desmoplastic cancer with a growth pattern characterized by periductal extension and infiltration. Studies have suggested that microRNAs (miRNAs) play an important role in BDC progression. Here we aim at investigating the effects of miR-329 on BDC development, focusing especially on epithelial-to-mesenchymal transition (EMT) in vitro and lymph node metastasis in vivo. Expression microarrays associated with BDC tissues were collected and differentially expressed genes were analyzed, followed by miRNA target prediction and verification. The role miR-329 played in BDC was examined using gain-of-function and loss-of-function methods. The expressions of miR-329, laminin subunit beta 3 (LAMB3), and EMT markers, in addition to cell proliferation, migration, and invasion were evaluated. Furthermore, nude mice models of BDC were established to observe tumor growth and metastatic lymph nodes. The LAMB3 was identified as an upregulated gene based on the GSE77984 and GSE45001 microarray analysis. LAMB3 was also predicted and confirmed to be a target gene of miR-329 by dual-luciferase reporter assay. Through further cell experiments, the EMT process was reversed, cell proliferation, invasion, and migration were suppressed, when miR-329 was upregulated. Furthermore, in vivo experiments exhibited that the overexpression of miR-329 inhibited tumor growth and the number of metastatic lymph nodes. This study provides in vivo and in vitro evidence that miR-329 inhibits BDC progression through translational repression of LAMB3. Therefore, the obtained results may aid as an experimental basis for improving prognosis of BDC.  相似文献   
987.
Rheumatoid arthritis (RA) is a chronic inflammatory disorder that can, in severe cases, lead to disability. CC chemokine receptor (CCR), an integral membrane protein, has been suggested to play a key role in the RA developmentThis study is to explore the role of CCR5 silencing in inflammatory response, viability, and apoptosis of synovial cells in RA rats by inactivating the mitogen-activated protein kinase (MAPK) signaling pathway. Microarray analysis was conducted to screen out differentially expressed genes from RA-related chips. The rat model was established by injection of siRNA-CCR5 and PD98059 (inhibitor of mitogen-activated protein kinase kinase 1) to evaluate the role of CCR5 silencing in RA, with the involvement of inflammatory response, synovial cell viability, apoptosis, and cycle. CCR5 was predicted to participate in RA by regulating the MARK pathway. In animal experiments, reduction was identified in arthritis index (AI), CCR5 positive expression rate, levels of tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), matrix metalloproteinase (MMP)-1, and MMP-3 in serum of RA rats after CCR5 siRNA and PD98059 injections. RA rats treated with CCR5 siRNA, and PD98059 presented with inhibition in cell viability, promotion of apoptosis, increase in cell proportion in G0/G1 phase, and shortened the S phase. In addition, the treatment of CCR5 siRNA, and PD98059 resulted in downregulated JNK1, ERK1, p38, Cyclin D1, Cyclin E1, Cyclin B1, and Bcl-2 and upregulated Bax and Cas3. These findings reveal that CCR5 silencing suppresses inflammatory response, inhibits viability, and promotes apoptosis of synovial cells in RA rats by inhibiting MAPK pathway. Therefore, CCR5 silencing may provide a novel therapeutic target for RA.  相似文献   
988.
Protein regulator of cytokinesis 1 (PRC1) has been reported in correlation with various malignancies. Functionality of PRC1 in nasopharyngeal carcinoma (NPC) was investigated, in perspective of long noncoding RNA (lncRNA) regulatory circuitry. Aberrant expressed messenger RNA and lncRNA were screened out from the Gene Expression Omnibus microarray database. NPC cell line CNE-2 was adopted for in vitro study and transfected with mimic or short hairpin RNA of miR-194-3p and PTPRG-AS1. The radioactive sensitivity, cell viability, migration, invasion, and apoptosis were detected. PTPRG-AS1 and PRC1 were upregulated in NPC, whereas miR-194-3p was downregulated. PTPRG-AS1 was found to specifically bind to miR-194-3p as a competing endogenous RNA and miR-194-3p targets and negatively regulates PRC1. Overexpressed miR-194-3p or silenced PTPRG-AS1 resulted in enhanced sensitivity to radiotherapy and cell apoptosis along with suppressed cell migration, invasion and proliferation in NPC. Furthermore, impaired tumor formation was also caused by miR-194-3p overexpression or PTPRG-AS1 suppression through xenograft tumor in nude mice. In our study, PTPRG-AS1/miR-194-3p/PRC1 regulatory circuitry was revealed in NPC, the mechanism of which can be of clinical significance for treatment of NPC.  相似文献   
989.
Hepatocellular carcinoma (HCC) is one of the most common lethal cancers worldwide. To explore the potential prognosis-associated microRNAs (miRNAs) for HCC patients, we performed integrated analyses on the miRNA expression profiles from The Cancer Genome Atlas project. Genome-wide overall survival (OS)- and progression-free survival (PFS)-associated miRNA screening were performed by multivariate Cox proportional hazards regression analyses. A five-miRNA expression signature (miR-148a, miR-3677-3p, miR-744*, miR-210, and miR-3613-5p) was identified as an indicator for HCC OS (p < .0001; hazard ratio [HR] = 2.631). In addition, a seven-miRNA expression signature (miR-127-5p, miR-146a, miR-152, miR-193a-3p, miR-331-5p, miR-500a*, and miR-550a*) was identified as a predictor for HCC PFS (p < .0001; HR = 2.608). This systematic analysis suggested that both the OS- and PFS-associated signatures have better performance in HCC survival prediction than the conventional clinicopathological parameters. Further functional enrichment analysis of the corresponding genes targeted by these signature miRNAs revealed their biological significance in the PI3K-Akt signaling pathway. In conclusion, our present study identified a five-miRNA OS-associated signature and a seven-miRNA PFS-associated signature as HCC prognostic biomarkers with potential clinical significance, which could enable the development of novel targeted therapeutic strategies for HCC treatment.  相似文献   
990.
Alternative splicing (AS) regulates a variety of biological activities in numerous tissues and organs, including the nervous system. However, the existence and specific roles of AS events during peripheral nerve repair and regeneration remain largely undetermined. In the current study, by mapping splice-crossing sequence reads, we identified AS events and relevant spliced genes in rat sciatic nerve stumps following sciatic nerve crush. AS-related genes at 1, 4, 7, and 14 days post nerve crush were compared with those at 0 day to discover alternatively spliced genes induced by sciatic nerve crush. These injury-induced alternatively spliced genes were then categorized to diseases and biological functions, genetic networks, and canonical signaling pathways. Bioinformatic analysis indicated that these alternatively spliced genes were mainly correlated to immune response, cellular growth, and cellular function maintenance. Our study elucidated AS events following peripheral nerve injury and might help deepen our understanding of the molecular mechanisms underlying peripheral nerve regeneration.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号