首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   593115篇
  免费   68888篇
  国内免费   809篇
  2018年   10178篇
  2017年   9724篇
  2016年   9746篇
  2015年   8647篇
  2014年   10090篇
  2013年   14036篇
  2012年   17807篇
  2011年   22409篇
  2010年   15883篇
  2009年   15143篇
  2008年   19191篇
  2007年   21196篇
  2006年   13572篇
  2005年   14244篇
  2004年   13560篇
  2003年   13337篇
  2002年   12781篇
  2001年   24475篇
  2000年   24857篇
  1999年   19673篇
  1998年   6996篇
  1997年   7406篇
  1996年   7138篇
  1995年   6822篇
  1994年   6759篇
  1993年   6661篇
  1992年   16795篇
  1991年   16594篇
  1990年   16160篇
  1989年   15662篇
  1988年   14584篇
  1987年   13995篇
  1986年   13052篇
  1985年   13149篇
  1984年   11023篇
  1983年   9747篇
  1982年   7515篇
  1981年   7037篇
  1980年   6595篇
  1979年   10976篇
  1978年   8525篇
  1977年   7857篇
  1976年   7477篇
  1975年   8274篇
  1974年   8574篇
  1973年   8415篇
  1972年   8439篇
  1971年   7344篇
  1970年   6067篇
  1969年   5717篇
排序方式: 共有10000条查询结果,搜索用时 161 毫秒
961.
Macrophage catabolism of lipid A is regulated by endotoxin stimulation   总被引:1,自引:0,他引:1  
Lipopolysaccharide (LPS) is a Gram-negative bacterial glycolipid that is believed to cause, by virtue of its stimulatory actions on macrophages and other eukaryotic cells, the life-threatening symptoms associated with Gram-negative infections. Macrophages both respond to and catabolically deactivate LPS. The lipid A moiety of LPS is responsible for the stimulatory actions of LPS on macrophages. We have previously developed methods employing a radiolabeled bioactive lipid A precursor, 4'-32P-lipid IVA, to study the interaction of this class of lipids with animal cells (Hampton, R. Y., Golenbock, D. T., and Raetz, C. R. H. (1988). J. Biol. Chem. 263, 14802-14807). In the current work, we have examined the uptake and catabolism of 4'-32P-lipid IVA by the RAW 264.7 cell line in serum-containing medium at physiological temperatures and have studied the effect of LPS stimulation on the ability of these cells to catabolize lipid IVA. RAW 264.7 macrophage-like cells avidly take up 4'-32P-lipid IVA under cell culture conditions at nanomolar concentrations. Uptake of lipid IVA was accompanied by lysosomal dephosphorylation of a fraction of the lipid to yield 4'-monophosphoryl lipid IVA. Chemically generated 4'-monophosphoryl lipid IVA was found to be substantially less bioactive than lipid IVA in the RAW cell, indicating that this catabolic dephosphorylation results in detoxification. In uptake experiments of 3-4 h duration, all metabolism of lipid IVA is blocked by ligands of the macrophage scavenger receptor. In longer experiments (24 h), both scavenger receptor-dependent and -independent uptake are responsible for the lysosomal catabolism of lipid IVA. Preincubation of RAW 264.7 cells with LPS caused dose-dependent inhibition of lipid IVA dephosphorylation. Sufficient LPS stimulation resulted in essentially complete inhibition of lipid IVA catabolism in both short- and long-term uptake experiments. This effect occurred at physiologically relevant concentrations of LPS (IC50 less than 1 ng/ml), and our data indicate that LPS-induced blockade of lipid IVA catabolism was due to the resultant physiological stimulation of the cells, and not inhibition of dephosphorylation by competition for uptake or enzymatic sites or by simple sequestration of labeled lipid IVA by LPS aggregates. We suggest that in the macrophage, LPS can modulate its own catabolism by virtue of its pharmacological properties. This effect of LPS could play a role in LPS pathophysiology as well as in macrophage biology.  相似文献   
962.
Spatio-temporal patterns generated by Salmonella typhimurium.   总被引:1,自引:0,他引:1       下载免费PDF全文
We present experimental results on the bacterium Salmonella typhimurium which show that cells of chemotactic strains aggregate in response to gradients of amino acids, attractants that they themselves excrete. Depending on the conditions under which cells are cultured, they form periodic arrays of continuous or perforated rings, which arise sequentially within a spreading bacterial lawn. Based on these experiments, we develop a biologically realistic cell-chemotaxis model to describe the self-organization of bacteria. Numerical and analytical investigations of the model mechanism show how the two types of observed geometric patterns can be generated by the interaction of the cells with chemoattractant they produce.  相似文献   
963.
964.
965.
Stairway climbing provides a ubiquitous and inconspicuous method of burning calories. While typically two strategies are employed for climbing stairs, climbing one stair step per stride or two steps per stride, research to date has not clarified if there are any differences in energy expenditure between them. Fourteen participants took part in two stair climbing trials whereby measures of heart rate were used to estimate energy expenditure during stairway ascent at speeds chosen by the participants. The relationship between rate of oxygen consumption () and heart rate was calibrated for each participant using an inclined treadmill. The trials involved climbing up and down a 14.05 m high stairway, either ascending one step per stride or ascending two stair steps per stride. Single-step climbing used 8.5±0.1 kcal min−1, whereas double step climbing used 9.2±0.1 kcal min−1. These estimations are similar to equivalent measures in all previous studies, which have all directly measured The present study findings indicate that (1) treadmill-calibrated heart rate recordings can be used as a valid alternative to respirometry to ascertain rate of energy expenditure during stair climbing; (2) two step climbing invokes a higher rate of energy expenditure; however, one step climbing is energetically more expensive in total over the entirety of a stairway. Therefore to expend the maximum number of calories when climbing a set of stairs the single-step strategy is better.  相似文献   
966.
967.
968.
Inhibition of methanogenesis in ruminal cultures was attempted by hindering thiamine availability through its degradation by ‘polyphenols’ and competition for active sites on enzymes and transporters using thiamine structural analogs. Effects on fermentation were small and not consistently reversed by adding thiamine. Lack of major effects of the compounds evaluated could be due to intracellular synthesis of thiamine covering most requirements.  相似文献   
969.
Primary cultures of endometrial glands and stromal cells were labelled with [14C]-arachidonic acid for 4 h before exposure to either the calcium ionophore, A23187 (which activates phospholipase A2 (PLA2) by increasing intracellular calcium concentrations) or sodium fluoride (which activates a G-protein). Calcium ionophore (0.5-50 mumol/l) stimulated a dose- and time-dependent release of arachidonic acid from endometrial glands. Incubation with ionophore (10 mumol/l) for 1 h released 22% of the incorporated arachidonic acid. There was a corresponding decrease in phospholipids and no loss from triglycerides. Stromal cells were unresponsive to ionophore. Fluoride (10 mmol/l) stimulated a release of arachidonic acid from stromal cells and endometrial glands (6.5% of the total arachidonic acid incorporated). In stromal cells, arachidonic acid was released from triglycerides in Day-1 cultures and from phospholipids in Day-2 cultures. In both Day-1 and Day-2 cultures of endometrial glands, arachidonic acid was released from phospholipids, but not from triglycerides. Among the phospholipids, phosphatidylcholine was always the major source of arachidonic acid. Arachidonic acid release from endometrial glands and stromal cells may be mediated by activation of PLA2 (or phospholipase C) via a G-protein, but in glands calcium ionophore may have a direct effect on PLA2. The response to calcium ionophore may reflect the differences in calcium requirements of the two endometrial PLA2 isoenzymes.  相似文献   
970.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号