首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   26829篇
  免费   15556篇
  国内免费   69篇
  2023年   26篇
  2022年   87篇
  2021年   414篇
  2020年   2199篇
  2019年   3732篇
  2018年   3836篇
  2017年   4118篇
  2016年   4108篇
  2015年   4038篇
  2014年   3692篇
  2013年   4120篇
  2012年   1836篇
  2011年   1530篇
  2010年   3092篇
  2009年   1855篇
  2008年   732篇
  2007年   350篇
  2006年   306篇
  2005年   341篇
  2004年   320篇
  2003年   320篇
  2002年   301篇
  2001年   263篇
  2000年   187篇
  1999年   141篇
  1998年   18篇
  1997年   23篇
  1996年   24篇
  1995年   23篇
  1994年   12篇
  1993年   18篇
  1992年   22篇
  1991年   14篇
  1990年   14篇
  1989年   15篇
  1988年   13篇
  1987年   11篇
  1985年   10篇
  1978年   10篇
  1976年   10篇
  1974年   15篇
  1971年   11篇
  1959年   9篇
  1958年   18篇
  1957年   18篇
  1956年   10篇
  1955年   16篇
  1954年   17篇
  1953年   11篇
  1951年   9篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.
Because of having many low molecular mass substrates, CYP2E1 is of particular interests to the pharmaceutical industry. Many evidences showed that this enzyme can adopt multiple substrates to significantly reduce the oxidation rate of the substrates. The detailed mechanism for this observation is still unclear. In the current study, we employed GPU‐accelerated molecular dynamics simulations to study the multiple‐binding mode of human CYP2E1, with an aim of offering a mechanistic explanation for the unexplained multiple‐substrate binding. Our results showed that Thr303 and Phe478 were key factors for the substrate recognition and multiple‐substrate binding. The former can form a significant hydrogen bond to recognize and position the substrate in the productive binding orientation in the active site. The latter acted as a mediator for the substrate communications via π–π stacking interactions. In the multiple‐binding mode, the aforementioned π–π stacking interactions formed by the aromatic rings of both substrates and Phe478 drove the first substrate far away from the catalytic center, orienting in an additional binding position and going against the substrate metabolism. All these findings could give atomic insights into the detailed mechanism for the multiple‐substrate binding in human CYP2E1, providing useful information for the drug metabolism mechanism and personalized use of clinical drugs. Proteins 2013; © 2012 Wiley Periodicals, Inc.  相似文献   
992.
A set of grid type knowledge‐based energy functions is introduced for ?χ1, ψχ1, ?ψ, and χ1χ2 torsion angle combinations. Boltzmann distribution is assumed for the torsion angle populations from protein X‐ray structures, and the functions are named as statistical torsion angle potential energy functions. The grid points around periodic boundaries are duplicated to force periodicity, and the remedy relieves the derivative discontinuity problem. The devised functions rapidly improve the quality of model structures. The potential bias in the functions and the usefulness of additional secondary structure information are also investigated. The proposed guiding functions are expected to facilitate protein structure modeling, such as protein structure prediction, protein design, and structure refinement. Proteins 2013. Proteins 2013; 81:1156–1165. © 2013 Wiley Periodicals, Inc.  相似文献   
993.
The effects of cavity‐creating mutations on the structural flexibility, local and global stability, and dynamics of the folded state of staphylococcal nuclease (SNase) were examined with NMR spectroscopy, MD simulations, H/D exchange, and pressure perturbation. Effects on global thermodynamic stability correlated well with the number of heavy atoms in the vicinity of the mutated residue. Variants with substitutions in the C‐terminal domain and the interface between α and β subdomains showed large amide chemical shift variations relative to the parent protein, moderate, widespread, and compensatory perturbations of the H/D protection factors and increased local dynamics on a nanosecond time scale. The pressure sensitivity of the folded states of these variants was similar to that of the parent protein. Such observations point to the capacity of the folded proteins to adjust to packing defects in these regions. In contrast, cavity creation in the β‐barrel subdomain led to minimal perturbation of the structure of the folded state, However, significant pressure dependence of the native state amide resonances, along with strong effects on native state H/D exchange are consistent with increased probability of population of excited state(s) for these variants. Such contrasted responses to the creation of cavities could not be anticipated from global thermodynamic stability or crystal structures; they depend on the local structural and energetic context of the substitutions. © 2012 Wiley Periodicals, Inc.  相似文献   
994.
The calpain family of Ca2+‐dependent cysteine proteases plays a vital role in many important biological processes which is closely related with a variety of pathological states. Activated calpains selectively cleave relevant substrates at specific cleavage sites, yielding multiple fragments that can have different functions from the intact substrate protein. Until now, our knowledge about the calpain functions and their substrate cleavage mechanisms are limited because the experimental determination and validation on calpain binding are usually laborious and expensive. In this work, we aim to develop a new computational approach (LabCaS) for accurate prediction of the calpain substrate cleavage sites from amino acid sequences. To overcome the imbalance of negative and positive samples in the machine‐learning training which have been suffered by most of the former approaches when splitting sequences into short peptides, we designed a conditional random field algorithm that can label the potential cleavage sites directly from the entire sequences. By integrating the multiple amino acid features and those derived from sequences, LabCaS achieves an accurate recognition of the cleave sites for most calpain proteins. In a jackknife test on a set of 129 benchmark proteins, LabCaS generates an AUC score 0.862. The LabCaS program is freely available at: http://www.csbio.sjtu.edu.cn/bioinf/LabCaS . Proteins 2013. © 2012 Wiley Periodicals, Inc.  相似文献   
995.
In the preceding paper, we found that ensembles of tripeptides with long or bulky chains can include up to 20% of various turns. Here, we determine the structural and thermodynamic characteristics of GxG peptides with short polar and/or ionizable central residues (D, N, C), whose conformational distributions exhibit higher than average percentage (>20%) of turn conformations. To probe the side‐chain conformations of these peptides, we determined the 3J(Hα,Hβ) coupling constants and derived the population of three rotamers with χ1‐angles of ?60°, 180° and 60°, which were correlated with residue propensities by DFT‐calculations. For protonated GDG, the rotamer distribution provides additional evidence for asx‐turns. A comparison of vibrational spectra and NMR coupling constants of protonated GDG, ionized GDG, and the protonated aspartic acid dipeptide revealed that side chain protonation increases the pPII content at the expense of turn populations. The charged terminal groups, however, have negligible influence on the conformational properties of the central residue. Like protonated GDG, cationic GCG samples asx‐turns to a significant extent. The temperature dependence of the UVCD spectra and 3J(HNHα) constants suggest that the turn populations of GDG and GNG are practically temperature‐independent, indicating enthalpic and entropic stabilization. The temperature‐independent J‐coupling and UVCD spectra of GNG require a three‐state model. Our results indicate that short side chains with hydrogen bonding capability in GxG segments of proteins may serve as hinge regions for establishing compact structures of unfolded proteins and peptides. Proteins 2013. © 2012 Wiley Periodicals, Inc.  相似文献   
996.
The sweet protein brazzein, a member of the Csβα fold family, contains four disulfide bonds that lend a high degree of thermal and pH stability to its structure. Nevertheless, a variable temperature study has revealed that the protein undergoes a local, reversible conformational change between 37 and 3°C with a midpoint about 27°C that changes the orientations and side‐chain hydrogen bond partners of Tyr8 and Tyr11. To test the functional significance of this effect, we used NMR saturation transfer to investigate the interaction between brazzein and the amino terminal domain of the sweet receptor subunit T1R2; the results showed a stronger interaction at 7°C than at 37°C. Thus the low temperature conformation, which alters the orientations of two loops known to be critical for the sweetness of brazzein, may represent the bound state of brazzein in the complex with the human sweet receptor. Proteins 2013; © 2012 Wiley Periodicals, Inc.  相似文献   
997.
MazF is an mRNA interferase that cleaves mRNAs at a specific RNA sequence. MazF from E. coli (MazF‐ec) cleaves RNA at A and CA. To date, a large number of MazF homologs that cleave RNA at specific three‐ to seven‐base sequences have been identified from bacteria to archaea. MazF‐ec forms a dimer, in which the interface between the two subunits is known to be the RNA substrate‐binding site. Here, we investigated the role of the two loops in MazF‐ec, which are closely associated with the interface of the MazF‐ec dimer. We examined whether exchanging the loop regions of MazF‐ec with those from other MazF homologs, such as MazF from Myxococcus xanthus (MazF‐mx) and MazF from Mycobacterium tuberculosis (MazF‐mt3), affects RNA cleavage specificity. We found that exchanging loop 2 of MazF‐ec with loop 2 regions from either MazF‐mx or MazF‐mt3 created a new cleavage sequence at (A/U)(A/U)AA and C in addition to the original cleavage site, A and CA, whereas exchanging loop 1 did not alter cleavage specificity. Intriguingly, exchange of loop 2 with 8 or 12 consecutive Gly residues also resulted in a new RNA cleavage site at (A/U)(A/U)AA and C. The present study suggests a method for expanding the RNA cleavage repertoire of mRNA interferases, which is crucial for potential use in the regulation of specific gene expression and for biotechnological applications. Proteins 2013. © 2012 Wiley Periodicals, Inc.  相似文献   
998.
Methenyltetrahydromethanopterin cyclohydrolase (Mch) is involved in the methanogenesis pathway of archaea as a C1 unit carrier where N5‐formyl‐tetrahydromethanopterin is converted to methenyl‐tetrahydromethanopterin. Mch from Methanobrevibacter ruminantium was cloned, purified, crystallized and its crystal structure solved at 1.37 Å resolution. A biologically active trimer, the enzyme is composed of two domains including an N‐terminal domain of six α‐helices encompassing a series of four β‐sheets and a predominantly anti‐parallel β–sheet at the C‐terminus flanked on one side by α‐helices. Sequence and structural alignments have helped identify residues involved in substrate binding and trimer formation. Proteins 2013; 81:2064–2070. © 2013 Wiley Periodicals, Inc.  相似文献   
999.
1000.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号