首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   166篇
  免费   14篇
  2023年   1篇
  2021年   2篇
  2020年   1篇
  2019年   4篇
  2018年   1篇
  2016年   1篇
  2015年   4篇
  2014年   5篇
  2013年   10篇
  2012年   10篇
  2011年   13篇
  2010年   9篇
  2009年   4篇
  2008年   6篇
  2007年   6篇
  2006年   8篇
  2005年   4篇
  2004年   12篇
  2003年   7篇
  2002年   10篇
  2001年   2篇
  2000年   5篇
  1999年   3篇
  1998年   1篇
  1997年   6篇
  1996年   1篇
  1995年   5篇
  1994年   1篇
  1993年   2篇
  1992年   4篇
  1991年   3篇
  1989年   2篇
  1988年   2篇
  1987年   2篇
  1986年   3篇
  1985年   2篇
  1984年   1篇
  1983年   3篇
  1982年   2篇
  1979年   1篇
  1975年   2篇
  1974年   5篇
  1972年   1篇
  1971年   1篇
  1969年   1篇
  1966年   1篇
排序方式: 共有180条查询结果,搜索用时 15 毫秒
91.
Homologous recombination (HR) is an essential genome stability mechanism used for high-fidelity repair of DNA double-strand breaks and for the recovery of stalled or collapsed DNA replication forks. The crucial homology search and DNA strand exchange steps of HR are catalyzed by presynaptic filaments-helical filaments of a recombinase enzyme bound to single-stranded DNA (ssDNA). Presynaptic filaments are fundamentally dynamic structures, the assembly, catalytic turnover, and disassembly of which must be closely coordinated with other elements of the DNA recombination, repair, and replication machinery in order for genome maintenance functions to be effective. Here, we reviewed the major dynamic elements controlling the assembly, activity, and disassembly of presynaptic filaments; some intrinsic such as recombinase ATP-binding and hydrolytic activities, others extrinsic such as ssDNA-binding proteins, mediator proteins, and DNA motor proteins. We examined dynamic behavior on multiple levels, including atomic- and filament-level structural changes associated with ATP binding and hydrolysis as evidenced in crystal structures, as well as subunit binding and dissociation events driven by intrinsic and extrinsic factors. We examined the biochemical properties of recombination proteins from four model systems (T4 phage, Escherichia coli, Saccharomyces cerevisiae, and Homo sapiens), demonstrating how their properties are tailored for the context-specific requirements in these diverse species. We proposed that the presynaptic filament has evolved to rely on multiple external factors for increased multilevel regulation of HR processes in genomes with greater structural and sequence complexity.  相似文献   
92.
Salmonella enterica is a common cause of diarrhea. For eliciting disease, the pathogen has to colonize the gut lumen, a site colonized by the microbiota. This process/initial stage is incompletely understood. Recent work established that one particular strain, Salmonella enterica subspecies 1 serovar Typhimurium strain SL1344, employs the hyb H2-hydrogenase for consuming microbiota-derived H2 to support gut luminal pathogen growth: Protons from the H2-splitting reaction contribute to the proton gradient across the outer bacterial membrane which can be harvested for ATP production or for import of carbon sources. However, it remained unclear, if other Salmonella strains would use the same strategy. In particular, earlier work had left unanswered if strain ATCC14028 might use H2 for growth at systemic sites. To clarify the role of the hydrogenases, it seems important to establish if H2 is used at systemic sites or in the gut and if Salmonella strains may differ with respect to the host sites where they require H2 in vivo. In order to resolve this, we constructed a strain lacking all three H2-hydrogenases of ATCC14028 (14028hyd3) and performed competitive infection experiments. Upon intragastric inoculation, 14028hyd3 was present at 100-fold lower numbers than 14028WT in the stool and at systemic sites. In contrast, i.v. inoculation led to equivalent systemic loads of 14028hyd3 and the wild type strain. However, the pathogen population spreading to the gut lumen featured again up to 100-fold attenuation of 14028hyd3. Therefore, ATCC14028 requires H2-hydrogenases for growth in the gut lumen and not at systemic sites. This extends previous work on ATCC14028 and supports the notion that H2-utilization might be a general feature of S. Typhimurium gut colonization.  相似文献   
93.
Mortality in a netpen-reared population of 3-year-old chinook salmon Oncorhynchus tshawytscha during an extensive 1997 bloom of the alga Heterosigma akashiwo in Puget Sound, Washington, was low (7·2%), and corresponded to a reduction in variance effective population size of 9·4%. Under a liability threshold model, the heritability of mortality (± S.E.), based on paternal half-sibs, was estimated at 0·15 ± 0·04. No significant genetic variation was detected for date of death. Despite the low overall mortality, the consequences for variation in family size underscore the importance of maximizing genetic variation in cultured fish populations later released to the wild as a precaution against mortality and losses of genetic variation over the life cycle. The pattern of family variation in response to this algal bloom provides evidence for potentially selective mortality of anadromous salmonids in the marine environment during natural perturbations.  相似文献   
94.
Implants trigger an inflammatory response, which is important for osseointegration. Here we studied neutrophil extracellular trap (NET) release of human neutrophils in response to sandblasted large-grit acid etched (SLA) implants using fluorescent, confocal laser scanning and scanning electron microscopy. Our studies demonstrate that human neutrophils rapidly adhered to SLA surfaces, which triggered histone citrullination and NET release. Further studies showed that albumin or acetylsalicylic acid had no significant effects on the inflammatory response to SLA surfaces. In contrast to bioinert materials, which do not osseointegrate, the bioactivity of SLA surfaces is coupled with the ability to release NETs. Further investigations are necessary for clarifying the role of NETosis for osseointegration.  相似文献   
95.
Salmonella Typhimurium causes diarrhea by infecting the epithelium and lamina propria of the intestinal mucosa and by secreting various effector proteins through type III secretion systems (TTSSs). However, the mechanisms by which Salmonella transverses the epithelium and is subsequently released into?the lamina propria are poorly understood. Using a murine Salmonella-diarrhea model and in?vivo microscopy, we show that epithelial traversal requires TTSS-1-mediated invasion and TTSS-2-dependent trafficking to the basolateral side. After being released into the lamina propria, the bacterium is transiently extracellular before being taken up by phagocytes, including CD11c(+)CX(3)CR1(high) monocytic phagocytes (MPs), which were found to constitutively sample cellular material shed from the basolateral side of the epithelium. Thus, Salmonella infects the cecal mucsa through a step-wise process wherein the bacterium transverses the epithelium through TTSS-2-dependent trafficking and then likely exploits lamina propria MPs, which are sampling the epithelium, to enter and replicate within the host.  相似文献   
96.
RegIIIβ is a member of the C-type lectin family called RegIII. It is known to bind peptidoglycan, and its bactericidal activity shapes the interactions with commensal and pathogenic gut bacteria. However, little is known about its carbohydrate recognition specificity and the bactericidal mechanism, particularly against Gram-negative bacteria. Here, we show that RegIIIβ can bind directly to LPS by recognizing the carbohydrate moiety of lipid A via a novel motif that is indispensable for its bactericidal activity. This bactericidal activity of RegIIIβ could be inhibited by preincubation with LPS, lipid A, or gentiobiose. The latter is a disaccharide composed of two units of β-(1→6)-linked d-glucose and resembles the carbohydrate moiety of lipid A. Therefore, this structural element may form a key target site recognized by RegIIIβ. Using point-mutated RegIIIβ proteins, we found that amino acid residues in two structural motifs termed “loop 1” and “loop 2,” are important for peptidoglycan and lipid A binding (Arg-135, Asp-142) and for the bactericidal activity (Glu-134, Asn-136, Asp-142). Thus, the ERN motif and residue Asp-142 in the loop 2 are of critical importance for RegIIIβ function. This provides novel insights into the carbohydrate recognition specificity of RegIIIβ and explains its bactericidal activity against Gram-negative bacteria.  相似文献   
97.
Comparative genomics demonstrated that the chromosomes from bacteria and their viruses (bacteriophages) are coevolving. This process is most evident for bacterial pathogens where the majority contain prophages or phage remnants integrated into the bacterial DNA. Many prophages from bacterial pathogens encode virulence factors. Two situations can be distinguished: Vibrio cholerae, Shiga toxin-producing Escherichia coli, Corynebacterium diphtheriae, and Clostridium botulinum depend on a specific prophage-encoded toxin for causing a specific disease, whereas Staphylococcus aureus, Streptococcus pyogenes, and Salmonella enterica serovar Typhimurium harbor a multitude of prophages and each phage-encoded virulence or fitness factor makes an incremental contribution to the fitness of the lysogen. These prophages behave like “swarms” of related prophages. Prophage diversification seems to be fueled by the frequent transfer of phage material by recombination with superinfecting phages, resident prophages, or occasional acquisition of other mobile DNA elements or bacterial chromosomal genes. Prophages also contribute to the diversification of the bacterial genome architecture. In many cases, they actually represent a large fraction of the strain-specific DNA sequences. In addition, they can serve as anchoring points for genome inversions. The current review presents the available genomics and biological data on prophages from bacterial pathogens in an evolutionary framework.  相似文献   
98.
Genetically identical populations of unicellular organisms often show marked variation in some phenotypic traits. To investigate the molecular causes and possible biological functions of this phenotypic noise, it would be useful to have a method to identify genes whose expression varies stochastically on a certain time scale. Here, we developed such a method and used it for identifying genes with high levels of phenotypic noise in Salmonella enterica ssp. I serovar Typhimurium (S. Typhimurium). We created a genomic plasmid library fused to a green fluorescent protein (GFP) reporter and subjected replicate populations harboring this library to fluctuating selection for GFP expression using fluorescent-activated cell sorting (FACS). After seven rounds of fluctuating selection, the populations were strongly enriched for promoters that showed a high amount of noise in gene expression. Our results indicate that the activity of some promoters of S. Typhimurium varies on such a short time scale that these promoters can absorb rapid fluctuations in the direction of selection, as imposed during our experiment. The genomic fragments that conferred the highest levels of phenotypic variation were promoters controlling the synthesis of flagella, which are associated with virulence and host–pathogen interactions. This confirms earlier reports that phenotypic noise may play a role in pathogenesis and indicates that these promoters have among the highest levels of noise in the S. Typhimurium genome. This approach can be applied to many other bacterial and eukaryotic systems as a simple method for identifying genes with noisy expression.  相似文献   
99.
The mammalian intestine is colonized by a dense bacterial community, called microbiota. The microbiota shields from intestinal infection (colonization resistance). Recently, we have shown that enteropathogenic Salmonella spp. can exploit inflammation to compete with the intestinal microbiota. The mechanisms explaining the enhanced pathogen growth in the inflamed intestine are elusive. Here, we analysed the function of bacterial flagella in the inflamed intestine using a mouse model for acute Salmonella Typhimurium enterocolitis. Mutations affecting flagellar assembly (Fla-) and chemotaxis (Che-) impaired the pathogen's fitness in the inflamed intestine, but not in the normal gut. This was attributable to a localized source of high-energy nutrients (e.g. galactose-containing glyco-conjugates, mucin) released as an element of the mucosal defence. Motility allows Salmonella Typhimurium to benefit from these nutrients and utilize them for enhanced growth. Thus, nutrient availability contributes to enhanced pathogen growth in the inflamed intestine. Strategies interfering with bacterial motility or nutrient availability might offer starting points for therapeutic approaches.  相似文献   
100.
Comparative genomics demonstrated that the chromosomes from bacteria and their viruses (bacteriophages) are coevolving. This process is most evident for bacterial pathogens where the majority contain prophages or phage remnants integrated into the bacterial DNA. Many prophages from bacterial pathogens encode virulence factors. Two situations can be distinguished: Vibrio cholerae, Shiga toxin-producing Escherichia coli, Corynebacterium diphtheriae, and Clostridium botulinum depend on a specific prophage-encoded toxin for causing a specific disease, whereas Staphylococcus aureus, Streptococcus pyogenes, and Salmonella enterica serovar Typhimurium harbor a multitude of prophages and each phage-encoded virulence or fitness factor makes an incremental contribution to the fitness of the lysogen. These prophages behave like "swarms" of related prophages. Prophage diversification seems to be fueled by the frequent transfer of phage material by recombination with superinfecting phages, resident prophages, or occasional acquisition of other mobile DNA elements or bacterial chromosomal genes. Prophages also contribute to the diversification of the bacterial genome architecture. In many cases, they actually represent a large fraction of the strain-specific DNA sequences. In addition, they can serve as anchoring points for genome inversions. The current review presents the available genomics and biological data on prophages from bacterial pathogens in an evolutionary framework.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号