首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1292篇
  免费   136篇
  2021年   16篇
  2020年   6篇
  2019年   8篇
  2018年   9篇
  2017年   16篇
  2016年   31篇
  2015年   49篇
  2014年   50篇
  2013年   70篇
  2012年   81篇
  2011年   87篇
  2010年   51篇
  2009年   54篇
  2008年   78篇
  2007年   72篇
  2006年   81篇
  2005年   80篇
  2004年   61篇
  2003年   59篇
  2002年   61篇
  2001年   23篇
  2000年   31篇
  1999年   34篇
  1998年   20篇
  1997年   22篇
  1996年   17篇
  1995年   9篇
  1994年   18篇
  1993年   24篇
  1992年   17篇
  1991年   11篇
  1990年   9篇
  1989年   18篇
  1988年   11篇
  1987年   8篇
  1986年   9篇
  1985年   10篇
  1984年   8篇
  1983年   6篇
  1982年   5篇
  1981年   11篇
  1980年   9篇
  1979年   5篇
  1978年   13篇
  1976年   4篇
  1975年   7篇
  1974年   5篇
  1973年   5篇
  1972年   5篇
  1969年   6篇
排序方式: 共有1428条查询结果,搜索用时 696 毫秒
71.
The speed and efficiency of quantum cascade laser‐based mid‐infrared microspectroscopy are demonstrated using two different model organisms as examples. For the slowly moving Amoeba proteus, a quantum cascade laser is tuned over the wavelength range of 7.6 µm to 8.6 µm (wavenumbers 1320 cm–1 and 1160 cm–1, respectively). The recording of a hyperspectral image takes 11.3 s whereby an average signal‐to‐noise ratio of 29 is achieved. The limits of time resolution are tested by imaging the fast moving Caenorhabditis elegans at a discrete wavenumber of 1265 cm–1. Mid‐infrared imaging is performed with the 640 × 480 pixel video graphics array (VGA) standard and at a full‐frame time resolution of 0.02 s (i.e. well above the most common frame rate standards). An average signal‐to‐noise ratio of 16 is obtained. To the best of our knowledge, these findings constitute the first mid‐infrared imaging of living organisms at VGA standard and video frame rate.

  相似文献   

72.
73.
74.

Background

Impaired renal function causes dyslipidemia that contributes to elevated cardiovascular risk in patients with chronic kidney disease (CKD). The proprotein convertase subtilisin/kexin type 9 (PCSK9) is a regulator of the LDL receptor and plasma cholesterol concentrations. Its relationship to kidney function and cardiovascular events in patients with reduced glomerular filtration rate (GFR) has not been explored.

Methods

Lipid parameters including PCSK9 were measured in two independent cohorts. CARE FOR HOMe (Cardiovascular and Renal Outcome in CKD 2–4 Patients—The Forth Homburg evaluation) enrolled 443 patients with reduced GFR (between 90 and 15 ml/min/1.73 m2) referred for nephrological care that were prospectively followed for the occurrence of a composite cardiovascular endpoint. As a replication cohort, PCSK9 was quantitated in 1450 patients with GFR between 90 and 15 ml/min/1.73 m2 enrolled in the Ludwigshafen Risk and Cardiovascular Health Study (LURIC) that were prospectively followed for cardiovascular deaths.

Results

PCSK9 concentrations did not correlate with baseline GFR (CARE FOR HOMe: r = -0.034; p = 0.479; LURIC: r = -0.017; p = 0.512). 91 patients in CARE FOR HOMe and 335 patients in LURIC reached an endpoint during a median follow-up of 3.0 [1.8–4.1] years and 10.0 [7.3–10.6] years, respectively. Kaplan-Meier analyses showed that PCSK9 concentrations did not predict cardiovascular events in either cohort [CARE FOR HOMe (p = 0.622); LURIC (p = 0.729)]. Sensitivity analyses according to statin intake yielded similar results.

Conclusion

In two well characterized independent cohort studies, PCSK9 plasma levels did not correlate with kidney function. Furthermore, PCSK9 plasma concentrations were not associated with cardiovascular events in patients with reduced renal function.  相似文献   
75.
Transcutaneous stimulation of the human lumbosacral spinal cord is used to evoke spinal reflexes and to neuromodulate altered sensorimotor function following spinal cord injury. Both applications require the reliable stimulation of afferent posterior root fibers. Yet under certain circumstances, efferent anterior root fibers can be co-activated. We hypothesized that body position influences the preferential stimulation of sensory or motor fibers. Stimulus-triggered responses to transcutaneous spinal cord stimulation were recorded using surface-electromyography from quadriceps, hamstrings, tibialis anterior, and triceps surae muscles in 10 individuals with intact nervous systems in the supine, standing and prone positions. Single and paired (30-ms inter-stimulus intervals) biphasic stimulation pulses were applied through surface electrodes placed on the skin between the T11 and T12 inter-spinous processes referenced to electrodes on the abdomen. The paired stimulation was applied to evaluate the origin of the evoked electromyographic response; trans-synaptic responses would be suppressed whereas direct efferent responses would almost retain their amplitude. We found that responses to the second stimulus were decreased to 14%±5% of the amplitude of the response to the initial pulse in the supine position across muscles, to 30%±5% in the standing, and to only 80%±5% in the prone position. Response thresholds were lowest during standing and highest in the prone position and response amplitudes were largest in the supine and smallest in the prone position. The responses obtained in the supine and standing positions likely resulted from selective stimulation of sensory fibers while concomitant motor-fiber stimulation occurred in the prone position. We assume that changes of root-fiber paths within the generated electric field when in the prone position increase the stimulation thresholds of posterior above those of anterior root fibers. Thus, we recommend conducting spinal reflex or neuromodulation studies with subjects lying supine or in an upright position, as in standing or stepping.  相似文献   
76.
The ATP-binding cassette half-transporter Mdl1 from Saccharomyces cerevisiae has been proposed to be involved in the quality control of misassembled respiratory chain complexes by exporting degradation products generated by the m-AAA proteases from the matrix. Direct functional or structural data of the transport complex are, however, not known so far. After screening expression in various hosts, Mdl1 was overexpressed 100-fold to 1% of total mitochondrial membrane protein in S. cerevisiae. Based on detergent screens, Mdl1 was solubilized and purified to homogeneity. Mdl1 showed a high binding affinity for MgATP (Kd = 0.26 microm) and an ATPase activity with a Km of 0.86 mm (Hill coefficient of 0.98) and a turnover rate of 2.6 ATP/s. Mutagenesis of the conserved glutamate downstream of the Walker B motif (E599Q) or the conserved histidine of the H-loop (H631A) abolished ATP hydrolysis, whereas ATP binding was not affected. Mdl1 reconstituted into liposomes showed an ATPase activity similar to the solubilized complex. By single particle electron microscopy, a first three-dimensional structure of the mitochondrial ATP-binding cassette transporter was derived at 2.3-nm resolution, revealing a homodimeric complex in an open conformation.  相似文献   
77.
Accumulation of hyperphosphorylated Tau protein as paired helical filaments in pyramidal neurons is a major hallmark of Alzheimer disease. Besides hyperphosphorylation, other modifications of the Tau protein, such as cross-linking, are likely to contribute to the characteristic features of paired helical filaments, including their insolubility and resistance against proteolytic degradation. In this study, we have investigated whether the four reactive carbonyl compounds acrolein, malondialdehyde, glyoxal, and methylglyoxal accelerate the formation of Tau oligomers, thioflavin T-positive aggregates, and fibrils using wild-type and seven pseudophosphorylated mutant Tau proteins. Acrolein and methylglyoxal were the most reactive compounds followed by glyoxal and malondialdehyde in terms of formation of Tau dimers and higher molecular weight oligomers. Furthermore, acrolein and methylglyoxal induced the formation of thioflavin T-fluorescent aggregates in a triple pseudophosphorylation-mimicking mutant to a slightly higher degree than wild-type Tau. Analysis of the Tau aggregates by electron microscopy study showed that formation of fibrils using wild-type Tau and several Tau mutants could be observed with acrolein and methylglyoxal but not with glyoxal and malondialdehyde. Our results suggest that reactive carbonyl compounds, particularly methylglyoxal and acrolein, could accelerate tangle formation in vivo and that this process could be slightly accelerated, at least in the case of methylglyoxal and acrolein, by hyperphosphorylation. Interference with the formation or the reaction of these reactive carbonyl compounds could be a promising way of inhibiting tangle formation and neuronal dysfunction in Alzheimer disease and other tauopathies.  相似文献   
78.

Background

Obesity is a major health problem. Although heritability is substantial, genetic mechanisms predisposing to obesity are not very well understood. We have performed a genome wide association study (GWA) for early onset (extreme) obesity.

Methodology/Principal Findings

a) GWA (Genome-Wide Human SNP Array 5.0 comprising 440,794 single nucleotide polymorphisms) for early onset extreme obesity based on 487 extremely obese young German individuals and 442 healthy lean German controls; b) confirmatory analyses on 644 independent families with at least one obese offspring and both parents. We aimed to identify and subsequently confirm the 15 SNPs (minor allele frequency ≥10%) with the lowest p-values of the GWA by four genetic models: additive, recessive, dominant and allelic. Six single nucleotide polymorphisms (SNPs) in FTO (fat mass and obesity associated gene) within one linkage disequilibrium (LD) block including the GWA SNP rendering the lowest p-value (rs1121980; log-additive model: nominal p = 1.13×10−7, corrected p = 0.0494; odds ratio (OR)CT 1.67, 95% confidence interval (CI) 1.22–2.27; ORTT 2.76, 95% CI 1.88–4.03) belonged to the 15 SNPs showing the strongest evidence for association with obesity. For confirmation we genotyped 11 of these in the 644 independent families (of the six FTO SNPs we chose only two representing the LD bock). For both FTO SNPs the initial association was confirmed (both Bonferroni corrected p<0.01). However, none of the nine non-FTO SNPs revealed significant transmission disequilibrium.

Conclusions/Significance

Our GWA for extreme early onset obesity substantiates that variation in FTO strongly contributes to early onset obesity. This is a further proof of concept for GWA to detect genes relevant for highly complex phenotypes. We concurrently show that nine additional SNPs with initially low p-values in the GWA were not confirmed in our family study, thus suggesting that of the best 15 SNPs in the GWA only the FTO SNPs represent true positive findings.  相似文献   
79.
Detection of image motion direction begins in the retina, with starburst amacrine cells (SACs) playing a major role. SACs generate larger dendritic Ca2+ signals when motion is from their somata towards their dendritic tips than for motion in the opposite direction. To study the mechanisms underlying the computation of direction selectivity (DS) in SAC dendrites, electrical responses to expanding and contracting circular wave visual stimuli were measured via somatic whole-cell recordings and quantified using Fourier analysis. Fundamental and, especially, harmonic frequency components were larger for expanding stimuli. This DS persists in the presence of GABA and glycine receptor antagonists, suggesting that inhibitory network interactions are not essential. The presence of harmonics indicates nonlinearity, which, as the relationship between harmonic amplitudes and holding potential indicates, is likely due to the activation of voltage-gated channels. [Ca2+] changes in SAC dendrites evoked by voltage steps and monitored by two-photon microscopy suggest that the distal dendrite is tonically depolarized relative to the soma, due in part to resting currents mediated by tonic glutamatergic synaptic input, and that high-voltage–activated Ca2+ channels are active at rest. Supported by compartmental modeling, we conclude that dendritic DS in SACs can be computed by the dendrites themselves, relying on voltage-gated channels and a dendritic voltage gradient, which provides the spatial asymmetry necessary for direction discrimination.  相似文献   
80.
The essential trace element zinc The human body contains 2–3 grams of the essential trace element zinc, and uptake as well as excretion underlies a tight control. If this balance is disturbed, a number of biological processes are affected: among other tasks, zinc is important for the development and function of the central nervous system, the immune defense, and the production and function of insulin. This is based on over 300 different zinc‐containing enzymes, several other zinc proteins, and a role of zinc in intracellular signal transduction.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号