首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   56838篇
  免费   5465篇
  国内免费   205篇
  2021年   491篇
  2018年   647篇
  2017年   607篇
  2016年   890篇
  2015年   1059篇
  2014年   1310篇
  2013年   1600篇
  2012年   1865篇
  2011年   1880篇
  2010年   1334篇
  2009年   1320篇
  2008年   1788篇
  2007年   1806篇
  2006年   1712篇
  2005年   1565篇
  2004年   1504篇
  2003年   1452篇
  2002年   1349篇
  2001年   3187篇
  2000年   2874篇
  1999年   2169篇
  1998年   786篇
  1997年   708篇
  1996年   639篇
  1995年   545篇
  1994年   562篇
  1992年   1626篇
  1991年   1495篇
  1990年   1430篇
  1989年   1335篇
  1988年   1223篇
  1987年   1189篇
  1986年   1053篇
  1985年   1063篇
  1984年   820篇
  1983年   773篇
  1982年   571篇
  1979年   858篇
  1978年   652篇
  1977年   595篇
  1976年   537篇
  1975年   667篇
  1974年   755篇
  1973年   730篇
  1972年   728篇
  1971年   691篇
  1970年   648篇
  1969年   649篇
  1968年   539篇
  1966年   496篇
排序方式: 共有10000条查询结果,搜索用时 14 毫秒
51.
The gorgoniid Eugorgia is exclusively an eastern Pacific genus. It has a wide geographic and bathymetric range of distribution, found from California to Perú and extends down to 65 m deep. Two new species are herein described. The morphological characters were analyzed and illustrated by light and scanning electron microscopy. Eugorgia beebei sp. n. can be distinguished by its white, ascending, sparse colony growth. Eugorgia mutabilis sp. n. can be distinguished by its white colony that changes color after collection, and the conspicuous sharp-crested disc sclerites. From a morphological point of view the new species are related to the daniana-group, the rubens-group and the siedenburgae-group of Eugorgia; their affiliations, and the proposal of a new group are discussed. These new species increases the number of species in the genus to 15, and contribute to the knowledge of the eastern Pacific octocoral biodiversity.  相似文献   
52.
At Aktau Mountain in the Ili depression of eastern Kazakstan, fossil mammals that encompass the Paleogene-Neogene boundary occur at three stratigraphic levels. The lowest level is in the lower Kyzylbulak Formation and produces Brontotheriidae and the hyracodontidArdynia and is tentatively assigned a late Eocene (Ergilian) age. The lower part of the overlying Aktau Formation produces fossils of the giant rhinocerosParaceratherium and is tentatively assigned a late Oligocene (Tabenbulukian) age. The upper part of the Aktau Formation yields a fossil mammal assemblage that includesGomphotherium,Stephanocemas, Brachypotherium andLagomeryx. It is clearly of Miocene age, probably late early Miocene (late Burdigalian), a correlative of European Reference Level MN 5 and the late Shanwangian of China. The Paleogene-Neogene boundary at Aktau Mountain thus is in the Aktau Formation.  相似文献   
53.
  1. Animal behavior is elicited, in part, in response to external conditions, but understanding how animals perceive the environment and make the decisions that bring about these behavioral responses is challenging.
  2. Animal heads often move during specific behaviors and, additionally, typically have sensory systems (notably vision, smell, and hearing) sampling in defined arcs (normally to the front of their heads). As such, head‐mounted electronic sensors consisting of accelerometers and magnetometers, which can be used to determine the movement and directionality of animal heads (where head “movement” is defined here as changes in heading [azimuth] and/or pitch [elevation angle]), can potentially provide information both on behaviors in general and also clarify which parts of the environment the animals might be prioritizing (“environmental framing”).
  3. We propose a new approach to visualize the data of such head‐mounted tags that combines the instantaneous outputs of head heading and pitch in a single intuitive spherical plot. This sphere has magnetic heading denoted by “longitude” position and head pitch by “latitude” on this “orientation sphere” (O‐sphere).
  4. We construct the O‐sphere for the head rotations of a number of vertebrates with contrasting body shape and ecology (oryx, sheep, tortoises, and turtles), illustrating various behaviors, including foraging, walking, and environmental scanning. We also propose correcting head orientations for body orientations to highlight specific heading‐independent head rotation, and propose the derivation of O‐sphere‐metrics, such as angular speed across the sphere. This should help identify the functions of various head behaviors.
  5. Visualizations of the O‐sphere provide an intuitive representation of animal behavior manifest via head orientation and rotation. This has ramifications for quantifying and understanding behaviors ranging from navigation through vigilance to feeding and, when used in tandem with body movement, should provide an important link between perception of the environment and response to it in free‐ranging animals.
  相似文献   
54.
Four thalamic and cortical recordings were carried out in 5 patients. The thalamic-evoked potentials were typical and revealed a triphasic complex, but their latencies showed a relatively high standard deviation. They could be divided into two groups according to their latencies, both of which had low SD. These data suggested that there could be two types of latency of thalamic SEP, because the 4 patients' body sizes were very similar. More detailed surface, cortical and depth recordings are needed to resolve these questions.  相似文献   
55.
56.
57.
Using ethyl methane sulfonate (EMS) treatment of the seeds ofline SGE, a new mutant of pea (Pisum sativum L.) with alterationsin root development was obtained. The mutant phenotype dependson the density of the growth substrate: on sand (a high densitysubstrate) the mutant forms a small compact curly root systemwhereas on vermiculite (a low density substrate) differencesbetween the root systems of the mutant and wild type plantsare less pronounced. Genetic analysis revealed that the mutantcarries a mutation in a new pea gene designedcrt (curly roots).Gene crt has been localized in pea linkage group V. The mutantline named SGEcrt showed increased sensitivity to exogenousauxin and an increased concentration of endogenous indole-3-aceticacid (IAA) in comparison with the wild type line SGE. Copyright2000 Annals of Botany Company Pisum sativum L., root development, garden pea mutant, curly roots, auxin, environmental stimulus response  相似文献   
58.
We previously reported that aged mice lacking complement factor H (CFH) exhibit visual defects and structural changes in the retina. However, it is not known whether this phenotype is age-related or is the consequence of disturbed development. To address this question we investigated the effect of Cfh gene deletion on the retinal phenotype of young and mid-age mice. Cfh −/− mouse eyes exhibited thickening of the retina and reduced nuclear density, but relatively normal scotopic and photopic electroretinograms. At 12 months there was evidence of subtle astroglial activation in the Cfh −/− eyes, and significant elevation of the complement regulator, decay-accelerating factor (DAF) in Müller cells. In the retinal pigment epithelium (RPE) of young control and Cfh −/− animals mitochondria and melanosomes were oriented basally and apically respectively, whereas the apical positioning of melanosomes was significantly perturbed in the mid-age Cfh −/− RPE. We conclude that deletion of Cfh in the mouse leads to defects in the retina that precede any marked loss of visual function, but which become progressively more marked as the animals age. These observations are consistent with a lifelong role for CFH in retinal homeostasis.  相似文献   
59.
Effect of precursors on biosynthesis of monensins A and B   总被引:1,自引:0,他引:1  
Precursors of monensins (acetate, propionate, butyrate, isobutyrate) affect the total production and the relative proportion of monensins A and B. Addition of propionate into the fermentation medium causes a prevalence of monensin B whereas butyrate and isobutyrate stimulate the production of monensin A and suppress the production of monensin B.  相似文献   
60.
The continuous alpha-neurotoxin-binding regions on the extracellular part (residues 1-210) of the alpha-chain of Torpedo californica acetylcholine receptor were localized by reaction of 125I-labelled alpha-bungarotoxin with synthetic overlapping peptides spanning this entire part of the chain. The specificity of the binding was confirmed by inhibition with unlabelled toxin and, for appropriate peptides, with unlabelled anti-(acetylcholine receptor) antibodies. Five toxin-binding regions were localized within residues 1-10, 32-41, 100-115, 122-150 and 182-198. The third, fourth and fifth (and to a lesser extent the first and second) toxin-binding regions overlapped with regions recognized by anti-(acetylcholine receptor) antibodies. The five toxin-binding regions may be distinct sites or, alternatively, different 'faces' in one (or more) sites.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号