首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   270篇
  免费   23篇
  2021年   7篇
  2020年   6篇
  2018年   4篇
  2017年   3篇
  2016年   5篇
  2015年   10篇
  2014年   12篇
  2013年   18篇
  2012年   22篇
  2011年   21篇
  2010年   12篇
  2009年   11篇
  2008年   14篇
  2007年   9篇
  2006年   12篇
  2005年   19篇
  2004年   14篇
  2003年   18篇
  2002年   9篇
  2001年   3篇
  2000年   5篇
  1999年   4篇
  1998年   2篇
  1995年   3篇
  1993年   2篇
  1992年   2篇
  1990年   2篇
  1989年   2篇
  1987年   2篇
  1982年   2篇
  1977年   1篇
  1976年   2篇
  1975年   1篇
  1974年   4篇
  1973年   1篇
  1972年   2篇
  1971年   1篇
  1970年   2篇
  1969年   1篇
  1967年   1篇
  1965年   1篇
  1963年   1篇
  1961年   4篇
  1960年   1篇
  1957年   1篇
  1955年   1篇
  1954年   1篇
  1953年   1篇
  1906年   1篇
  1905年   1篇
排序方式: 共有293条查询结果,搜索用时 15 毫秒
111.
The role of the Ca2+ ion that is present in the structure of Burkholderia glumae lipase was investigated. Previously, we demonstrated that the denatured lipase could be refolded in vitro into an active enzyme in the absence of calcium. Thus, an essential role for the ion in catalytic activity or in protein folding can be excluded. Therefore, a possible role of the Ca2+ ion in stabilizing the enzyme was considered. Chelation of the Ca2+ ion by EDTA severely reduced the enzyme activity and increased its protease sensitivity, however, only at elevated temperatures. Furthermore, EDTA induced unfolding of the lipase in the presence of urea. From these results, it appeared that the Ca2+ ion in B. glumae lipase fulfils a structural role by stabilizing the enzyme under denaturing conditions. In contrast, calcium appears to play an additional role in the Pseudomonas aeruginosa lipase, since, unlike B. glumae lipase, in vitro refolding of this enzyme was strictly dependent on calcium. Besides the role of the Ca2+ ion, also the role of the disulfide bond in B. glumae lipase was studied. Incubation of the native enzyme with dithiothreitol reduced the enzyme activity and increased its protease sensitivity at elevated temperatures. Therefore, the disulfide bond, like calcium, appears to stabilize the enzyme under detrimental conditions.  相似文献   
112.
The dairy starter bacterium Lactococcus lactis is able to synthesize folate and accumulates >90% of the produced folate intracellularly, predominantly in the polyglutamyl form. Approximately 10% of the produced folate is released into the environment. Overexpression of folC in L. lactis led to an increase in the length of the polyglutamyl tail from the predominant 4, 5, and 6 glutamate residues in wild-type cells to a maximum of 12 glutamate residues in the folate synthetase overproducer and resulted in a complete retention of folate in the cells. Overexpression of folKE, encoding the bifunctional protein 2-amino-4-hydroxy-6-hydroxymethyldihydropteridine pyrophosphokinase and GTP-cyclohydrolase I, resulted in reduction of the average polyglutamyl tail length, leading to enhanced excretion of folate. By simultaneous overexpression of folKE and folC, encoding the enzyme folate synthetase or polyglutamyl folate synthetase, the average polyglutamyl tail length was increased, again resulting in normal wild-type distribution of folate. The production of bioavailable monoglutamyl folate and almost complete release of folate from the bacterium was achieved by expressing the gene for γ-glutamyl hydrolase from human or rat origin. These engineering studies clearly establish the role of the polyglutamyl tail length in intracellular retention of the folate produced. Also, the potential application of engineered food microbes producing folates with different tail lengths is discussed.  相似文献   
113.
The dairy starter bacterium Lactococcus lactis is able to synthesize folate and accumulates large amounts of folate, predominantly in the polyglutamyl form. Only small amounts of the produced folate are released in the extracellular medium. Five genes involved in folate biosynthesis were identified in a folate gene cluster in L. lactis MG1363: folA, folB, folKE, folP, and folC. The gene folKE encodes the biprotein 2-amino-4-hydroxy-6-hydroxymethyldihydropteridine pyrophosphokinase and GTP cyclohydrolase I. The overexpression of folKE in L. lactis was found to increase the extracellular folate production almost 10-fold, while the total folate production increased almost 3-fold. The controlled combined overexpression of folKE and folC, encoding polyglutamyl folate synthetase, increased the retention of folate in the cell. The cloning and overexpression of folA, encoding dihydrofolate reductase, decreased the folate production twofold, suggesting a feedback inhibition of reduced folates on folate biosynthesis.  相似文献   
114.
We aimed to produce intrinsically L-[1-13C]phenylalanine labeled milk and beef for subsequent use in human nutrition research. The collection of the various organ tissues after slaughter allowed for us to gain insight into the dynamics of tissue protein turnover in vivo in a lactating dairy cow. One lactating dairy cow received a constant infusion of L-[1-13C]phenylalanine (450 µmol/min) for 96 h. Plasma and milk were collected prior to, during, and after the stable isotope infusion. Twenty-four hours after cessation of the infusion the cow was slaughtered. The meat and samples of the various organ tissues (liver, heart, lung, udder, kidney, rumen, small intestine, and colon) were collected and stored. Approximately 210 kg of intrinsically labeled beef (bone and fat free) with an average L-[1-13C]phenylalanine enrichment of 1.8±0.1 mole percent excess (MPE) was obtained. The various organ tissues differed substantially in L-[1-13C]phenylalanine enrichments in the tissue protein bound pool, the highest enrichment levels were achieved in the kidney (11.7 MPE) and the lowest enrichment levels in the skeletal muscle tissue protein of the cow (between 1.5–2.4 MPE). The estimated protein synthesis rates of the various organ tissues should be regarded as underestimates, particularly for the organs with the higher turnover rates and high secretory activity, due to the lengthened (96 h) measurement period necessary for the production of the intrinsically labeled beef. Our data demonstrates that there are relatively small differences in L-[1-13C]phenylalanine enrichments between the various meat cuts, but substantial higher enrichment values are observed in the various organ tissues. We conclude that protein turnover rates of various organs are much higher when compared to skeletal muscle protein turnover rates in large lactating ruminants.  相似文献   
115.
116.
117.
Spontaneous activity of pacemaker cells or structures may be suppressed by rapid repetitive stimulation. Conditions are that the oscillator's phase reset curve, characterizing the phase resetting effect of single stimuli, has a phase delay part and that the interval between the stimuli falls within a range of values, determined by the form oo the phase reset curve. Under these conditions, which appeared the same as those for stable underdrive pacing, the pacemaker becomes stably entrained to the stimuli without firing, i.e. it is kept within a certian part of its limit cycle because the pulses repeatedly delay the next coming action potential. This rapid stimulation suppression of pacemaker activity is demonstrated experimentally on a simple electronic pacemaker cell model for two types of phase reset curves, a biphasic one for depolarizing and a monophasic one for hyperpolarizing pulses. Computer simulations of coupled pacemaker cells, interacting by phase reset curves, illustrate how this type of pacemaker suppression may protect a population of pacemaker cells like the sinus node in the heart against arrhythmias.Supported by the Netherlands Foundation for Medical Research FUNGOSupported by the Netherlands Organization for the Advancement of Pure Research ZWO  相似文献   
118.
Glycosyl transferases which recognize identical substrates (nucleotide-sugars and lipid-linked carbohydrates) can substitute for one another in bacterial polysaccharide biosynthesis, even if the enzymes originate in different genera of bacteria. This substitution can be used to identify the substrate specificities of uncharacterized transferase genes. The spsK gene of Sphingomonas strain S88 and the pssDE genes of Rhizobium leguminosarum were identified as encoding glucuronosyl-(β1→4)-glucosyl transferases based on reciprocal genetic complementation of mutations in the spsK gene and the pssDE genes by segments of cloned DNA and by the SpsK-dependent incorporation of radioactive glucose (Glc) and glucuronic acid (GlcA) into lipid-linked disaccharides in EDTA-permeabilized cells. By contrast, glycosyl transferases which form alternative sugar linkages to the same substrate caused inhibition of polysaccharide synthesis or were deleterious or lethal in a foreign host. The negative effects also suggested specific substrate requirements: we propose that spsL codes for a glucosyl-(β1→4)-glucuronosyl transferase in Sphingomonas and that pssC codes for a glucuronosyl-(β1→4)-glucuronosyl transferase in R. leguminosarum. Finally, the complementation results indicate the order of attachment of sphingan main-chain sugars to the C55-isoprenylphosphate carrier as -Glc-GlcA-Glc-isoprenylpyrophosphate.  相似文献   
119.
120.
Inhibition of translation of several mRNA species in a micrococcal nuclease treated reticulocyte lysate by cap analogues was compared with the competition between two mRNAs. Inhibition characteristics were very similar, only complete mRNA molecules inhibited at concentrations 150 times lower than m7 G5ppp5G. The inhibition of mRNA translation by cap analogues could be neutralized by the addition of extra mRNA in a manner predicted from the competitive nature of the inhibition by cap analogues.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号