首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   87篇
  免费   4篇
  2021年   3篇
  2019年   1篇
  2018年   1篇
  2017年   1篇
  2016年   8篇
  2015年   4篇
  2014年   1篇
  2013年   5篇
  2012年   4篇
  2011年   2篇
  2010年   7篇
  2009年   3篇
  2008年   4篇
  2007年   3篇
  2006年   6篇
  2005年   3篇
  2004年   9篇
  2003年   7篇
  2001年   5篇
  1998年   1篇
  1997年   2篇
  1996年   1篇
  1991年   1篇
  1988年   1篇
  1986年   1篇
  1985年   1篇
  1983年   1篇
  1977年   1篇
  1974年   3篇
  1950年   1篇
排序方式: 共有91条查询结果,搜索用时 15 毫秒
71.
Intra-amniotic (IA) lipopolysaccharide (LPS) induces intrauterine and fetal lung inflammation and increases lung surfactant and compliance in preterm sheep; however, the mechanisms are unknown. Prostaglandins (PGs) are inflammatory mediators, and PGE(2) has established roles in fetal lung surfactant production. The aim of our first study was to determine PGE(2) concentrations in response to IA LPS and pulmonary gene expression for PG synthetic [prostaglandin H synthase-2 (PGHS-2) and PGE synthase (PGES)] and PG-metabolizing [prostaglandin dehydrogenase (PGDH)] enzymes and PGE(2) receptors. Our second study aimed to block LPS-induced increases in PGE(2) with a PGHS-2 inhibitor (nimesulide) and determine lung inflammation and surfactant protein mRNA expression. Pregnant ewes received an IA saline or LPS injection at 118 days of gestation. In study 1, fetal plasma and amniotic fluid were sampled before and at 2, 4, 6, 12, and 24 h after injection and then daily, and fetuses were delivered 2 or 7 days later. Amniotic fluid PGE(2) concentrations increased (P < 0.05) 12 h and 3-6 days after LPS. Fetal lung PGHS-2 mRNA and PGES mRNA increased 2 (P = 0.0084) and 7 (P = 0.014) days after LPS, respectively. In study 2, maternal intravenous nimesulide or vehicle infusion began immediately before LPS or saline injection and continued until delivery 2 days later. Nimesulide inhibited LPS-induced increases in PGE(2) and decreased fetal lung IL-1β and IL-8 mRNA (P ≤ 0.002) without altering lung inflammatory cell infiltration. Nimesulide decreased surfactant protein (SP)-A (P = 0.05), -B (P = 0.05), and -D (P = 0.0015) but increased SP-C mRNA (P = 0.023). Thus PGHS-2 mediates, at least in part, fetal pulmonary responses to inflammation.  相似文献   
72.
73.
74.
A custom knee loading apparatus (KLA), when used in conjunction with magnetic resonance imaging, enables in vivo measurement of the gross anterior laxity of the knee joint. A numerical model was applied to the KLA to understand the contribution of the individual joint structures and to estimate the stiffness of the anterior-cruciate ligament (ACL). The model was evaluated with a cadaveric study using an in situ knee loading apparatus and an ElectroForce test system. A constrained optimization solution technique was able to predict the restraining forces within the soft-tissue structures and joint contact. The numerical model presented here allowed in vivo prediction of the material stiffness parameters of the ACL in response to applied anterior loading. Promising results were obtained for in vivo load sharing within the structures. The numerical model overestimated the ACL forces by 27.61–92.71%. This study presents a novel approach to estimate ligament stiffness and provides the basis to develop a robust and accurate measure of in vivo knee joint laxity.  相似文献   
75.
76.
77.
78.
In A431 cells, depletion of cholesterol with methyl-beta-cyclodextrin induced an increase in both basal and epidermal growth factor (EGF)-stimulated EGF receptor phosphorylation. This increase in phosphorylation was site-specific, with significant increases occurring at Tyr845, Tyr992, and Tyr1173, but only minor changes at Tyr1045 and Tyr1068. The elevated level of receptor phosphorylation was associated with an increase in the intrinsic kinase activity of the EGF receptor kinase, possibly as a result of the cyclodextrin-induced enhancement of the phosphorylation of Tyr845, a site in the kinase activation loop known to be phosphorylated by pp60src. Cholesterol and its enantiomer (ent-cholesterol) were used to investigate the molecular basis for the modulation of EGF receptor function by cholesterol. Natural cholesterol (nat-cholesterol) was oxidized substantially more rapidly than ent-cholesterol by cholesterol oxidase, a protein that contains a specific binding site for the sterol. By contrast, the ability of nat- and ent-cholesterol to interact with sphingomyelins and phosphatidylcholine and to induce lipid condensation in a monolayer system was the same. These data suggest that, whereas cholesterol-protein interactions may be sensitive to the absolute configuration of the sterol, sterol-lipid interactions are not. nat- and ent-cholesterol were tested for their ability to physically reconstitute lipid rafts following depletion of cholesterol. nat- and ent-cholesterol reversed to the same extent the enhanced phosphorylation of the EGF receptor that occurred following removal of cholesterol. Furthermore, the enantiomers showed similar abilities to reconstitute lipid rafts in cyclodextrin-treated cells. These data suggest that cholesterol most likely affects EGF receptor function because of its physical effects on membrane properties, not through direct enantioselective interactions with the receptor.  相似文献   
79.
Stimulation of a cell with insulin initiates a signal transduction cascade that results in cellular activities that include phosphorylation of the receptor itself. Measurement of the degree of phosphorylation can serve as a marker for receptor activation. Receptor phosphorylation has been measured using Western blot analysis, which is very low throughput and not easily quantifiable. The goal of this project was to develop a cell-based assay to measure receptor phosphorylation in high throughput. This report describes a cell-based assay for insulin receptor phosphorylation that is robust and amenable to high-volume screening in a microwell format.  相似文献   
80.
Macrophages in advanced atherosclerotic lesions accumulate large amounts of unesterified, or "free," cholesterol (FC). FC accumulation induces macrophage apoptosis, which likely contributes to plaque destabilization. Apoptosis is triggered by the enrichment of the endoplasmic reticulum (ER) with FC, resulting in depletion of ER calcium stores, and induction of the unfolded protein response. To explain the mechanism of ER calcium depletion, we hypothesized that FC enrichment of the normally cholesterol-poor ER membrane inhibits the macrophage ER calcium pump, sarcoplasmic-endoplasmic reticulum calcium ATPase-2b (SERCA2b). FC enrichment of ER membranes to a level similar to that occurring in vivo inhibited both the ATPase activity and calcium sequestration function of SERCA2b. Enrichment of ER with ent-cholesterol or 14:0-18:0 phosphatidylcholine, which possess the membrane-ordering properties of cholesterol, also inhibited SERCA2b. Moreover, at various levels of FC enrichment of ER membranes, there was a very close correlation between increasing membrane lipid order, as monitored by 16-doxyl-phosphatidycholine electron spin resonance, and SERCA2b inhibition. In view of these data, we speculate that SERCA2b, a conformationally active protein with 11 membrane-spanning regions, loses function due to decreased conformational freedom in FC-ordered membranes. This biophysical model may underlie the critical connection between excess cholesterol, unfolded protein response induction, macrophage death, and plaque destabilization in advanced atherosclerosis.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号