首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1199篇
  免费   172篇
  2021年   14篇
  2020年   10篇
  2019年   11篇
  2018年   9篇
  2017年   13篇
  2016年   20篇
  2015年   30篇
  2014年   38篇
  2013年   57篇
  2012年   69篇
  2011年   67篇
  2010年   38篇
  2009年   37篇
  2008年   55篇
  2007年   58篇
  2006年   47篇
  2005年   55篇
  2004年   33篇
  2003年   36篇
  2002年   40篇
  2001年   39篇
  2000年   36篇
  1999年   24篇
  1998年   19篇
  1997年   12篇
  1996年   25篇
  1995年   17篇
  1993年   16篇
  1992年   24篇
  1991年   34篇
  1990年   32篇
  1989年   26篇
  1988年   25篇
  1987年   20篇
  1986年   9篇
  1985年   19篇
  1984年   17篇
  1983年   16篇
  1981年   11篇
  1980年   14篇
  1979年   12篇
  1978年   20篇
  1977年   13篇
  1976年   10篇
  1975年   25篇
  1974年   16篇
  1973年   14篇
  1972年   11篇
  1971年   8篇
  1969年   9篇
排序方式: 共有1371条查询结果,搜索用时 15 毫秒
131.
New mechanisms and functions of actin nucleation   总被引:1,自引:0,他引:1  
In cells the de novo nucleation of actin filaments from monomers requires actin-nucleating proteins. These fall into three main families--the Arp2/3 complex and its nucleation promoting factors (NPFs), formins, and tandem-monomer-binding nucleators. In this review, we highlight recent advances in understanding the molecular mechanism of actin nucleation by both well-characterized and newly identified nucleators, and explore current insights into their cellular functions in membrane trafficking, cell migration and division. The mechanisms and functions of actin nucleators are proving to be more complex than previously considered, with extensive cooperation and overlap in their cellular roles.  相似文献   
132.
Pyrazinamide (PZA), an essential component of short-course anti-tuberculosis chemotherapy, was shown by Saturation Transfer Difference (STD) NMR methods to act as a competitive inhibitor of NADPH binding to purified Mycobacterium tuberculosis fatty acid synthase I (FAS I). Both PZA and pyrazinoic acid (POA) reversibly bind to FAS I but at different binding sites. The competitive binding of PZA and NADPH suggests potential FAS I binding sites. POA was not previously known to have any specific binding interactions. The STD NMR of NADPH bound to the mycobacterial FAS I was consistent with the orientation reported in published single crystal X-ray diffraction studies of fungal FAS I. Overall the differences in binding between PZA and POA are consistent with previous recognition of the importance of intracellular accumulation of POA for anti-mycobacterial activity.  相似文献   
133.
Virtual and high-throughput screening identified imidazo[1,2-a]pyrazines as inhibitors of B-Raf. We describe the rationale, SAR, and evolution of the initial hits to a series of furo[2,3-c]pyridine indanone oximes as highly potent and selective inhibitors of B-Raf.  相似文献   
134.
Genomic scans of multiple populations often reveal marker loci with greatly increased differentiation between populations. Often this differentiation coincides in space with contrasts in ecological factors, forming a genetic-environment association (GEA). GEAs imply a role for local adaptation, and so it is tempting to conclude that the strongly differentiated markers are themselves under ecologically based divergent selection, or are closely linked to loci under such selection. Here, we highlight an alternative and neglected explanation: intrinsic (i.e. environment-independent) pre- or post-zygotic genetic incompatibilities rather than local adaptation can be responsible for increased differentiation. Intrinsic genetic incompatibilities create endogenous barriers to gene flow, also known as tension zones, whose location can shift over time. However, tension zones have a tendency to become trapped by, and therefore to coincide with, exogenous barriers due to ecological selection. This coupling of endogenous and exogenous barriers can occur easily in spatially subdivided populations, even if the loci involved are unlinked. The result is that local adaptation explains where genetic breaks are positioned, but not necessarily their existence, which can be best explained by endogenous incompatibilities. More precisely, we show that (i) the coupling of endogenous and exogenous barriers can easily occur even when ecological selection is weak; (ii) when environmental heterogeneity is fine-grained, GEAs can emerge at incompatibility loci, but only locally, in places where habitats and gene pools are sufficiently intermingled to maintain linkage disequilibria between genetic incompatibilities, local-adaptation genes and neutral loci. Furthermore, the association between the locally adapted and intrinsically incompatible alleles (i.e. the sign of linkage disequilibrium between endogenous and exogenous loci) is arbitrary and can form in either direction. Reviewing results from the literature, we find that many predictions of our model are supported, including endogenous genetic barriers that coincide with environmental boundaries, local GEA in mosaic hybrid zones, and inverted or modified GEAs at distant locations. We argue that endogenous genetic barriers are often more likely than local adaptation to explain the majority of Fst-outlying loci observed in genome scan approaches - even when these are correlated to environmental variables.  相似文献   
135.
To address the monumental challenge of assigning function to millions of sequenced proteins, we completed the first of a kind all-versus-all sequence alignments using BLAST for 9.9 million proteins in the UniRef100 database. Microsoft Windows Azure produced over 3 billion filtered records in 6 days using 475 eight-core virtual machines. Protein classification into functional groups was then performed using Hive and custom jars implemented on top of Apache Hadoop utilizing the MapReduce paradigm. First, using the Clusters of Orthologous Genes (COG) database, a length normalized bit score (LNBS) was determined to be the best similarity measure for classification of proteins. LNBS achieved sensitivity and specificity of 98% each. Second, out of 5.1 million bacterial proteins, about two-thirds were assigned to significantly extended COG groups, encompassing 30 times more assigned proteins. Third, the remaining proteins were classified into protein functional groups using an innovative implementation of a single-linkage algorithm on an in-house Hadoop compute cluster. This implementation significantly reduces the run time for nonindexed queries and optimizes efficient clustering on a large scale. The performance was also verified on Amazon Elastic MapReduce. This clustering assigned nearly 2 million proteins to approximately half a million different functional groups. A similar approach was applied to classify 2.8 million eukaryotic sequences resulting in over 1 million proteins being assign to existing KOG groups and the remainder clustered into 100,000 functional groups.  相似文献   
136.
This article is a summary of the technology issues and challenges of data-intensive science and cloud computing as discussed in the Data-Intensive Science (DIS) workshop in Seattle, September 19-20, 2010.  相似文献   
137.
Cellular signal transduction occurs in complex and redundant interaction networks, which are best understood by simultaneously monitoring the activation dynamics of multiple components. Recent advances in biosensor technology have made it possible to visualize and quantify the activation of multiple network nodes in the same living cell. The precision and scope of this approach has been greatly extended by novel computational approaches (referred to as computational multiplexing) that can reveal relationships between network nodes imaged in separate cells.  相似文献   
138.
The results of investigations into performing DNA sequencing chemistry on a picoliter-scale electrowetting digital microfluidic platform are reported. Pyrosequencing utilizes pyrophosphate produced during nucleotide base addition to initiate a process ending with detection through a chemiluminescence reaction using firefly luciferase. The intensity of light produced during the reaction can be quantified to determine the number of bases added to the DNA strand. The logic-based control and discrete fluid droplets of a digital microfluidic device lend themselves well to the pyrosequencing process. Bead-bound DNA is magnetically held in a single location, and wash or reagent droplets added or split from it to circumvent product dilution. Here we discuss the dispensing, control, and magnetic manipulation of the paramagnetic beads used to hold target DNA. We also demonstrate and characterize the picoliter-scale reaction of luciferase with adenosine triphosphate to represent the detection steps of pyrosequencing and all necessary alterations for working on this scale.  相似文献   
139.
The SPIRE (Systematic Protein Investigative Research Environment) provides web-based experiment-specific mass spectrometry (MS) proteomics analysis (https://www.proteinspire.org). Its emphasis is on usability and integration of the best analytic tools. SPIRE provides an easy to use web-interface and generates results in both interactive and simple data formats. In contrast to run-based approaches, SPIRE conducts the analysis based on the experimental design. It employs novel methods to generate false discovery rates and local false discovery rates (FDR, LFDR) and integrates the best and complementary open-source search and data analysis methods. The SPIRE approach of integrating X!Tandem, OMSSA and SpectraST can produce an increase in protein IDs (52-88%) over current combinations of scoring and single search engines while also providing accurate multi-faceted error estimation. One of SPIRE's primary assets is combining the results with data on protein function, pathways and protein expression from model organisms. We demonstrate some of SPIRE's capabilities by analyzing mitochondrial proteins from the wild type and 3 mutants of C. elegans. SPIRE also connects results to publically available proteomics data through its Model Organism Protein Expression Database (MOPED). SPIRE can also provide analysis and annotation for user supplied protein ID and expression data.  相似文献   
140.

Background

Marine microbial communities have been essential contributors to global biomass, nutrient cycling, and biodiversity since the early history of Earth, but so far their community distribution patterns remain unknown in most marine ecosystems.

Methodology/Principal Findings

The synthesis of 9.6 million bacterial V6-rRNA amplicons for 509 samples that span the global ocean''s surface to the deep-sea floor shows that pelagic and benthic communities greatly differ, at all taxonomic levels, and share <10% bacterial types defined at 3% sequence similarity level. Surface and deep water, coastal and open ocean, and anoxic and oxic ecosystems host distinct communities that reflect productivity, land influences and other environmental constraints such as oxygen availability. The high variability of bacterial community composition specific to vent and coastal ecosystems reflects the heterogeneity and dynamic nature of these habitats. Both pelagic and benthic bacterial community distributions correlate with surface water productivity, reflecting the coupling between both realms by particle export. Also, differences in physical mixing may play a fundamental role in the distribution patterns of marine bacteria, as benthic communities showed a higher dissimilarity with increasing distance than pelagic communities.

Conclusions/Significance

This first synthesis of global bacterial distribution across different ecosystems of the World''s oceans shows remarkable horizontal and vertical large-scale patterns in bacterial communities. This opens interesting perspectives for the definition of biogeographical biomes for bacteria of ocean waters and the seabed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号