首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1084篇
  免费   175篇
  2021年   10篇
  2018年   13篇
  2017年   16篇
  2016年   12篇
  2015年   36篇
  2014年   19篇
  2013年   32篇
  2012年   51篇
  2011年   40篇
  2010年   27篇
  2009年   14篇
  2008年   43篇
  2007年   31篇
  2006年   33篇
  2005年   32篇
  2004年   30篇
  2003年   36篇
  2002年   49篇
  2001年   51篇
  2000年   35篇
  1999年   43篇
  1998年   20篇
  1997年   22篇
  1996年   15篇
  1995年   18篇
  1994年   17篇
  1993年   15篇
  1992年   35篇
  1991年   31篇
  1990年   24篇
  1989年   23篇
  1988年   38篇
  1987年   26篇
  1986年   31篇
  1985年   18篇
  1984年   19篇
  1983年   16篇
  1982年   16篇
  1981年   15篇
  1980年   19篇
  1979年   21篇
  1978年   10篇
  1977年   16篇
  1975年   13篇
  1974年   10篇
  1973年   18篇
  1972年   15篇
  1971年   9篇
  1969年   10篇
  1968年   9篇
排序方式: 共有1259条查询结果,搜索用时 343 毫秒
71.
Tellurite (TeO3(2-)) is highly toxic to most microorganisms. The mechanisms of toxicity or resistance are poorly understood. It has been shown that tellurite rapidly depletes the reduced thiol content within wild-type Escherichia coli. We have shown that the presence of plasmid-borne tellurite-resistance determinants protects against general thiol oxidation by tellurite. In the present study we observe that the tellurite-dependent depletion of cellular thiols in mutants of the glutathione and thioredoxin thiol:redox system was less than in wild-type cells. To identify the type of low-molecular-weight thiol compounds affected by tellurite exposure, the thiol-containing molecules were analyzed by reverse phase HPLC as their monobromobimane derivatives. Results indicated that reduced glutathione is a major initial target of tellurite reactivity within the cell. Other thiol species are also targeted by tellurite, including reduced coenzyme A. The presence of the tellurite resistance determinants kilA and ter protect against the loss of reduced glutathione by as much as 60% over a 2 h exposure. This protection of glutathione oxidation is likely key to the resistance mechanism of these determinants. Additionally, the thiol oxidation response curves were compared between selenite and tellurite. The loss of thiol compounds within the cell recovered from selenite but not to tellurite.  相似文献   
72.
Acetylcholinesterase (AChE) has been found to be associated with the core of senile plaques. We have shown that AChE interacts with the amyloid beta-peptide (Abeta) and promotes amyloid fibril formation by a hydrophobic environment close to the peripheral anionic binding site (PAS) of the enzyme. Here we present evidence for the structural motif of AChE involved in this interaction. First, we modeled the docking of Abeta onto the structure of Torpedo californica AChE, and identified four potential sites for AChE-Abeta complex formation. One of these, Site I, spans a major hydrophobic sequence exposed on the surface of AChE, which had been previously shown to interact with liposomes [Shin et al. (1996) Protein Sci. 5, 42-51]. Second, we examined several AChE-derived peptides and found that a synthetic 35-residue peptide corresponding to the above hydrophobic sequence was able to promote amyloid formation. We also studied the ability to promote amyloid formation of two synthetic 24-residue peptides derived from the sequence of a Omega-loop, which has been suggested as an AChE-Abeta interacting motif. Kinetic analyses indicate that only the 35-residue hydrophobic peptide mimics the effect of intact AChE on amyloid formation. Moreover, RP-HPLC analysis revealed that the 35-residue peptide was incorporated into the growing Abeta-fibrils. Finally, fluorescence binding studies showed that this peptide binds Abeta with a K(d) = 184 microM, independent of salt concentration, indicating that the interaction is primarily hydrophobic. Our results indicate that the homologous human AChE motif is capable of accelerating Abeta fibrillogenesis.  相似文献   
73.
Data has been published showing that in heterotetrameric liver mitochondrial aldehyde dehydrogenase composed of the active (E487) and the inactive Oriental-variant (K487) subunit, the Oriental variant was dominant and caused the inactivation of the E487 subunit. The published structures of the enzyme showed that the glutamate at position 487 is salt bonded to an arginine (475) in a different subunit. Arg475 was mutated to a glutamine to test for its importance in causing the Oriental variant to be an enzyme with a high Km for NAD and a low specific activity. Unexpectedly, the R475Q mutant exhibited positive cooperativity in NAD binding with a Hill coefficient of 2. Individual heterotetramers composed of subunits of E487 and K487 were produced by making changes to two residues on the surface of the enzyme and then co-expressing both cDNAs in E. coli. The E(3)K form had essentially 50% the activity of the E(4) homotetrameric form while EK(3) had essentially the same properties as did the homotetrameric K(4) Oriental variant. This showed that in a dimer pair composed of one K- and one E- subunit the K-subunit became dominant and caused the inactivation of its E-partner. Further, pre-steady state burst data and steady state kinetic data make it appear that there was one functioning active subunit in each of the dimer pairs that made up the tetrameric enzyme. Thus, the half-of-the-site reactivity is a result of having one functioning and one non-functioning subunit in each dimer pair. The actual structural basis for this is still not understood, but could be related to the E487-R475 inter-dimer salt bond.  相似文献   
74.
Peripheral immune tolerance following i.v. administration of Ag has been shown to occur in the absence of B cells. Because different mechanisms have been identified for i.v. vs low dose oral tolerance and B cells are a predominant component of the gut-associated lymphoid tissue (GALT) they may play a role in tolerance induction following oral Ag. To examine the role of B cells in oral tolerance we fed low doses of OVA or myelin oligodendrocyte glycoprotein to B cell-deficient ( microMT) and wild-type C57BL/6 mice. Results showed that the GALT of naive wild-type and microMT mice was characterized by major differences in the cytokine microenvironment. Feeding low doses of 0.5 mg OVA or 250 microg myelin oligodendrocyte glycoprotein resulted in up-regulation of IL-4, IL-10, and TGF-beta in the GALT of wild-type but not microMT mice. Upon stimulation of popliteal node cells, in vitro induction of regulatory cytokines TGF-beta and IL-10 was observed in wild-type but not microMT mice. Greater protection against experimental autoimmune encephalomyelitis was found in wild-type mice. Oral tolerance in microMT and wild-type mice was found to proceed by different mechanisms. Anergy was observed from 0.5 mg to 250 ng in microMT mice but not in wild-type mice. Increased Ag was detected in the lymph of microMT mice. No cytokine-mediated suppression was found following lower doses from 100 ng to 500 pg in either group. These results demonstrate the importance of the B cell for the induction of cytokine-mediated suppression associated with low doses of Ag.  相似文献   
75.
Human liver cytosolic and mitochondrial isozymes of aldehyde dehydrogenase share 70% sequence identity. However, the first 21 residues are not conserved between the human isozymes (15% identity). The three-dimensional structures of the beef mitochondrial and sheep cytosolic forms have virtually identical three-dimensional structures. Here, we solved the structure of the human mitochondrial enzyme and found it to be identical to the beef enzyme. The first 21 residues are found on the surface of the enzyme and make no contact with other subunits in the tetramer. A pair of chimeric enzymes between the human isozymes was made. Each chimera had the first 21 residues from one isozyme and the remaining 479 from the other. When the first 21 residues were from the mitochondrial isozyme, an enzyme with cytosolic-like properties was produced. The other was expressed but was insoluble. It was possible to restore solubility and activity to the chimera that had the first 21 cytosolic residues fused to the mitochondrial ones by making point mutations to residues at the N-terminal end. When residue 19 was changed from tyrosine to a cysteine, the residue found in the mitochondrial form, an active enzyme could be made though the Km for NAD+ was 35 times higher than the native mitochondrial isozyme and the specific activity was reduced by 75%. This residue interacts with residue 203, a nonconserved, nonactive site residue. A mutation of residue 18, which also interacts with 203, restored solubility, but not activity. Mutation to residue 15, which interacts with 104, also restored solubility but not activity. It appears that to have a soluble or active enzyme a favorable interaction must occur between a residue in a surface loop and a residue elsewhere in the molecule even though neither make contact with the active site region of the enzyme.  相似文献   
76.
An apparent conservative mutation, Leu to Val, at the second residue of the rat liver mitochondrial aldehyde dehydrogenase (ALDH) presequence resulted in a precursor protein that was not imported into mitochondria. Additional mutants were made to substitute various amino acids with nonpolar side chains for Leu2. The Ile, Phe, and Trp mutants were imported to an extent similar to that of the native precursor, but the Ala mutant was imported only about one-fourth as well. It was shown that the N-terminal methionine was removed from the L2V mutant in a reaction catalyzed by methionine aminopeptidase. The N-terminal methionine of native pALDH and the other mutant presequences was blocked, presumably by acetylation. Because of the difference in co-translational modification, the L2V mutant sustained a significant loss in the available hydrophobic surface of the presequence. Import competence was restored to the L2V mutant when it was translated using a system that did not remove Met1. The removal of an Arg-Gly-Pro helix linker segment (residues 11-14) from the L2V mutant, which shifted three leucine residues toward the N-terminus, also restored import competence. These results lead to the conclusion that a minimum amount of hydrophobic surface area near the N-termini of mitochondrial presequences is an essential property to determine their ability to be imported. As a result, both electrostatic and hydrophobic components must be considered when trying to understand the interactions between precursor proteins and proteins of the mitochondrial import apparatus.  相似文献   
77.
ObjectiveTo compare perinatal outcome and glycaemic control in two groups of pregnant diabetic patients receiving two insulin regimens.DesignRandomised controlled open label study.SettingUniversity affiliated hospital, Israel.Participants138 patients with gestational diabetes mellitus and 58 patients with pregestational diabetes mellitus received insulin four times daily, and 136 patients with gestational diabetes and 60 patients with pregestational diabetes received insulin twice daily.InterventionThree doses of regular insulin before meals and an intermediate insulin dose before bedtime (four times daily regimen), and a combination of regular and intermediate insulin in the morning and evening (twice daily regimen).ResultsMean daily insulin concentration before birth was higher in the women receiving insulin four times daily compared with twice daily: by 22 units (95% confidence interval 12 to 32) in patients with gestational diabetes and by 28 units (15 to 41) in patients with pregestational diabetes. Glycaemic control was better with the four times daily regimen than with the twice daily regimen: in patients with gestational diabetes mean blood glucose concentrations decreased by 0.19 mmol/l (0.13 to 0.25), HbA1c by 0.3% (0.2% to 0.4%), and fructosamine by 41 μmol/l (37 to 45), and adequate glycaemic control (mean blood glucose concentration <5.8 mmol/l) was achieved in 17% (8% to 26%) more women; in patients with pregestational diabetes mean blood glucose concentration decreased by 0.44 mmol/l (0.28 to 0.60), HbA1c by 0.5% (0.2% to 0.8%), and fructosamine by 51 μmol/l (45 to 57), and adequate glycaemic control was achieved in 31% (15% to 47%) more women. Maternal severe hypoglycaemic events, caesarean section, preterm birth, macrosomia, and low Apgar scores were similar in both dose groups. In women with gestational diabetes the four times daily regimen resulted in a lower rate of overall neonatal morbidity than the twice daily regimen (relative risk 0.59, 0.38 to 0.92), and the relative risk for hyperbilirubinaemia and hypoglycaemia was lower (0.51, 0.29 to 0.91 and 0.12, 0.02 to 0.97 respectively). The relative risk of hypoglycaemia in newborn infants to mothers with pregestational diabetes was 0.17 (0.04 to 0.74).ConclusionsGiving insulin four times rather than twice daily in pregnancy improved glycaemic control and perinatal outcome without further risking the mother.

Key messages

  • Improving maternal glycaemic control during pregnancy is the key to better perinatal outcome
  • In pregnant diabetic women insulin four times daily achieved better glycaemic control and lower rate of perinatal complications (hypoglycaemia, hyperbilirubinaemia) than insulin twice daily
  • Better glycaemic control resulted from a larger total daily insulin dose
  • The intensified regimen did not lead to higher rate of severe maternal hypoglycaemia
  相似文献   
78.
Spatial control of actin polymerization during neutrophil chemotaxis   总被引:2,自引:0,他引:2  
Neutrophils respond to chemotactic stimuli by increasing the nucleation and polymerization of actin filaments, but the location and regulation of these processes are not well understood. Here, using a permeabilized-cell assay, we show that chemotactic stimuli cause neutrophils to organize many discrete sites of actin polymerization, the distribution of which is biased by external chemotactic gradients. Furthermore, the Arp2/3 complex, which can nucleate actin polymerization, dynamically redistributes to the region of living neutrophils that receives maximal chemotactic stimulation, and the least-extractable pool of the Arp2/3 complex co-localizes with sites of actin polymerization. Our observations indicate that chemoattractant-stimulated neutrophils may establish discrete foci of actin polymerization that are similar to those generated at the posterior surface of the intracellular bacterium Listeria monocytogenes. We propose that asymmetrical establishment and/or maintenance of sites of actin polymerization produces directional migration of neutrophils in response to chemotactic gradients.  相似文献   
79.
Neurons use kinesin and dynein microtubule-dependent motor proteins to transport essential cellular components along axonal and dendritic microtubules. In a search for new kinesin-like proteins, we identified two neuronally enriched mouse kinesins that provide insight into a unique intracellular kinesin targeting mechanism in neurons. KIF21A and KIF21B share colinear amino acid similarity to each other, but not to any previously identified kinesins outside of the motor domain. Each protein also contains a domain of seven WD-40 repeats, which may be involved in binding to cargoes. Despite the amino acid sequence similarity between KIF21A and KIF21B, these proteins localize differently to dendrites and axons. KIF21A protein is localized throughout neurons, while KIF21B protein is highly enriched in dendrites. The plus end-directed motor activity of KIF21B and its enrichment in dendrites indicate that models suggesting that minus end-directed motor activity is sufficient for dendrite specific motor localization are inadequate. We suggest that a novel kinesin sorting mechanism is used by neurons to localize KIF21B protein to dendrites since its mRNA is restricted to the cell body.  相似文献   
80.
Activation of T cells requires both TCR-specific ligation by direct contact with peptide Ag-MHC complexes and coligation of the B7 family of ligands through CD28/CTLA-4 on the T cell surface. We recently reported that coadministration of CD86 cDNA along with DNA encoding HIV-1 Ags i.m. dramatically increased Ag-specific CTL responses. We investigated whether the bone marrow-derived professional APCs or muscle cells were responsible for the enhancement of CTL responses following CD86 coadministration. Accordingly, we analyzed CTL induction in bone marrow chimeras. These chimeras are capable of generating functional viral-specific CTLs against vaccinia virus and therefore represent a useful model system to study APC/T cell function in vivo. In vaccinated chimeras, we observed that only CD86 + Ag + MHC class I results in 1) detectable CTLs following in vitro restimulation, 2) detectable direct CTLs, 3) enhanced IFN-gamma production in an Ag-specific manner, and 4) dramatic tissue invasion of T cells. These results support that CD86 plays a central role in CTL induction in vivo, enabling non-bone marrow-derived cells to prime CTLs, a property previously associated solely with bone marrow-derived APCs.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号