首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4981篇
  免费   447篇
  国内免费   297篇
  2024年   4篇
  2023年   37篇
  2022年   47篇
  2021年   167篇
  2020年   138篇
  2019年   153篇
  2018年   203篇
  2017年   143篇
  2016年   231篇
  2015年   333篇
  2014年   375篇
  2013年   357篇
  2012年   504篇
  2011年   397篇
  2010年   273篇
  2009年   250篇
  2008年   282篇
  2007年   279篇
  2006年   273篇
  2005年   228篇
  2004年   208篇
  2003年   188篇
  2002年   144篇
  2001年   70篇
  2000年   50篇
  1999年   62篇
  1998年   25篇
  1997年   31篇
  1996年   26篇
  1995年   25篇
  1994年   27篇
  1993年   17篇
  1992年   19篇
  1991年   20篇
  1990年   17篇
  1989年   11篇
  1988年   13篇
  1987年   12篇
  1986年   11篇
  1985年   12篇
  1984年   5篇
  1983年   4篇
  1982年   7篇
  1981年   6篇
  1980年   7篇
  1979年   6篇
  1976年   5篇
  1973年   4篇
  1971年   4篇
  1967年   2篇
排序方式: 共有5725条查询结果,搜索用时 46 毫秒
71.
聚羟基脂肪酸酯 (Polyhydroxyalkanoates,PHAs) 是一种具有优质生物相容性的可降解生物基材料,其理化性质优越,具备替代石油基塑料的潜力。P(3HB-co-LA) 是PHAs的一种,融合了聚乳酸 (Polylactic acid,PLA) 和聚3-羟基丁酸 (poly(3-hydroxybutyrate),P(3HB)) 共同的优点,具有更好的韧性和透明度。文中首先在大肠杆菌MG1655中通过质粒表达外源基因phaA、phaB、phaCm和pctth,发酵生产出乳酸含量为23.8 mol%的P(3HB-co-LA),在此基础上缺失dld基因得到菌株WXJ01-03,其合成的聚合物中乳酸组分含量提升至37.2 mol%。当硫酯酶基因ydiI和yciA基因继续被敲除后,生产的共聚物中乳酸组分进一步提升至42.3 mol%和41.1 mol%。最后将3个基因dld、yciA和ydiI同时缺失得到重组菌株WXJ03-03,并通过该重组菌株获得了乳酸组分含量为46.1 mol%的共聚物。通过比较不同碳源的发酵结果得知,木糖有利于提高共聚物中乳酸组分含量。上述实验结果表明,在木糖发酵中短链硫酯酶基因缺失阻碍了大肠杆菌胞内的LA-CoA被降解,可有效提高聚合物中乳酸组分的摩尔百分比。  相似文献   
72.
Oh  Byeong Seob  Kim  Ji-Sun  Ryu  Seoung Woo  Yu  Seung Yeob  Lee  Jung-Sook  Park  Seung-Hwan  Kang  Se Won  Lee  Jiyoung  Lee  Mi-Kyung  Lee  Kang Hyun  Jung  Won Yong  Jung  Hyunjung  Hur  Tai-Young  Kim  Hyeun Bum  Kim  Jae-Kyung  Lee  Ju-Hoon  Jeong  Jae-Ho  Lee  Ju Huck 《Antonie van Leeuwenhoek》2021,114(12):2091-2099

An obligately anaerobic, Gram-stain-positive, non-motile, non-spore-forming and rod-shaped strain AGMB00832T was isolated from swine faeces. Phylogenetic analysis based on the 16S rRNA gene, together with the housekeeping genes, gyrB and rpoD, revealed that strain AGMB00832T belonged to the genus Faecalicatena and was most closely related to Faecalicatena orotica KCTC 15331T. In biochemical analysis, strain AGMB00832T was shown to be negative for catalase, oxidase and urease. Furthermore, the isolate was positive for β-glucosidase, β-glucuronidase, glutamic acid decarboxylase, proline arylamidase, acid phosphatase and naphthol-AS-BI-phosphohydrolase. The major cellular fatty acids (>?10%) of the isolate were C14:0, C16:0 and C18:1ω11t DMA. Based on the whole genome sequence analysis, the DNA G?+?C content of strain AGMB00832T was 44.2 mol%, and the genome size and numbers of rRNA and tRNA genes were 5,175,159 bp, 11 and 53, respectively. The average nucleotide identity and digital DNA–DNA hybridization values between strain AGMB00832T and related strains were ≤?77.4 and 22.5%, respectively. Furthermore, the genome analysis revealed the presence of genes for alkaline shock protein 23 and cation/proton antiporters, which may facilitate growth of strain AGMB00832T in alkaline culture condition. On the basis of polyphasic taxonomic approach, strain AGMB00832T represents a novel species within the genus Faecalicatena, for which the name Faecalicatena faecalis sp. nov. is proposed. The type strain is AGMB00832T (=?KCTC 15946T?=?NBRC 114613T).

  相似文献   
73.
74.
The infection status with Clonorchis sinensis metacercariae (CsMc) was examined in freshwater fishes from Yongjeon-cheon (a branch of Nakdong-gang) located in Cheongsong-gun, Gyeongsangbuk-do, the Republic of Korea (Korea). A total of 750 fishes in 19 species were examined by the artificial digestion method for 2 years (2019 and 2020). CsMc were detected in 378 (51.4%) out of 735 fishes in 14 species (73.7%), and the infection intensity was 666 per fish infected. In 2019, CsMc were found in 172 (68.0%) out of 253 fishes in 10 species, and the infection intensity was 565 per fish infected. In 2020, CsMc were detected in 206 (62.2%) out of 331 fishes in 10 species, and the infection intensity was 751 per fish infected. The other zoonotic trematode, ie. Metagonimus spp., Centrocestus armatus, Echinostoma spp. and Clinostomum complanatum, metacercariae were also detected in fishes from the survey streams, but their endemicities were relatively low. Conclusively, it was first confirmed that CsMc are highly endemic in fishes from Yongjeon-cheon in Cheongsong-gun, Gyeongsangbuk-do, Korea.  相似文献   
75.
Xie  Linlin  Ju  Zhao  Zhong  Chaojie  Wu  Yingjun  Zan  Yuxing  Hou  Wei  Feng  Yong 《中国病毒学》2021,36(1):85-94
The human myxovirus resistance 2(Mx2/Mx B) protein, a member of interferon(IFN)-inducible dynamin-like large GTPases, restricts a number of virus infections. Inhibition of these viruses occurs at poorly-defined steps after viral entry and has a common requirement for Mx B oligomerization. However, the GTPase activity is essential for the anti-viral effects of Mx B against herpesviruses and HBV but not HIV-1. To understand the role of Mx B GTPase activity, including GTP binding and GTP hydrolysis, in restriction of HIV-1 infection, we genetically separated these two functions and evaluated their contributions to restriction. We found that both the GTP binding and hydrolysis function of Mx B involved in the restriction of HIV-1 replication. The GTPase activity of Mx B contributed to its nuclear location, interaction with nucleoporins(NUPs) and HIV-1 capsids. Furthermore, Mx B disrupted the association between NUPs and HIV-1 cores dependently upon its GTPase activity. The function of GTPase activity was therefore multi-faceted, led to fundamentally distinct mechanisms employed by wild-type Mx B and GTPase activity defective Mx B mutations to restrict HIV-1 replication.  相似文献   
76.
Zhu  Yun  Xu  Baoping  Li  Changchong  Chen  Zhimin  Cao  Ling  Fu  Zhou  Shang  Yunxiao  Chen  Aihuan  Deng  Li  Bao  Yixiao  Sun  Yun  Ning  Limin  Yu  Shuilian  Gu  Fang  Liu  Chunyan  Yin  Ju  Shen  Adong  Xie  Zhengde  Shen  Kunling 《中国病毒学》2021,36(6):1543-1553
Virologica Sinica - Community-acquired pneumonia (CAP) is one of the leading causes of morbidity and mortality in children worldwide. In this study, we aimed to describe the aetiology of viral...  相似文献   
77.
International Journal of Peptide Research and Therapeutics - The peptides YYGGEGSSSEQG and SESEM derived from rice α-globulin have been reported to possess anti-atherosclerotic activity, but...  相似文献   
78.
The Golgi complex plays a central role in protein secretion by regulating cargo sorting and trafficking. As these processes are of functional importance to cell polarity, motility, growth, and division, there is considerable interest in achieving a comprehensive understanding of Golgi complex biology. However, the unique stack structure of this organelle has been a major hurdle to our understanding of how proteins are secreted through the Golgi apparatus. Herein, we summarize available relevant research to gain an understanding of protein secretion via the Golgi complex. This includes the molecular mechanisms of intra-Golgi trafficking and cargo export in the trans-Golgi network. Moreover, we review recent insights on signaling pathways regulated by the Golgi complex and their physiological significance.  相似文献   
79.
Insulin-dependent translocation of glucose transporter 4 (Glut4) to the plasma membrane of fat and skeletal muscle cells plays the key role in postprandial clearance of blood glucose. Glut4 represents the major cell-specific component of the insulin-responsive vesicles (IRVs). It is not clear, however, whether the presence of Glut4 in the IRVs is essential for their ability to respond to insulin stimulation. We prepared two lines of 3T3-L1 cells with low and high expression of myc7-Glut4 and studied its translocation to the plasma membrane upon insulin stimulation, using fluorescence-assisted cell sorting and cell surface biotinylation. In undifferentiated 3T3-L1 preadipocytes, translocation of myc7-Glut4 was low regardless of its expression levels. Coexpression of sortilin increased targeting of myc7-Glut4 to the IRVs, and its insulin responsiveness rose to the maximal levels observed in fully differentiated adipocytes. Sortilin ectopically expressed in undifferentiated cells was translocated to the plasma membrane regardless of the presence or absence of myc7-Glut4. AS160/TBC1D4 is expressed at low levels in preadipocytes but is induced in differentiation and provides an additional mechanism for the intracellular retention and insulin-stimulated release of Glut4.Adipocytes, skeletal muscle cells, and some neurons respond to insulin stimulation by translocating intracellular glucose transporter 4 (Glut4) to the plasma membrane. In all these cells, the insulin-responsive pool of Glut4 is localized in small membrane vesicles, the insulin-responsive vesicles (IRVs; Kandror and Pilch, 2011 ; Bogan, 2012 ). The protein composition of these vesicles has been largely characterized (Kandror and Pilch, 2011 ; Bogan, 2012 ). The IRVs consist predominantly of Glut4, insulin-responsive aminopeptidase (IRAP), sortilin, low-density-lipoprotein receptor–related protein 1 (LRP1), SCAMPs, and VAMP2. Glut4, IRAP, and sortilin physically interact with each other, which might be important for the biogenesis of the IRVs (Shi and Kandror, 2007 ; Shi et al., 2008 ). In addition, the IRVs compartmentalize recycling receptors, such as the transferrin receptor and the IGF2/mannose 6-phosphate receptor, although it is not clear whether these receptors represent obligatory vesicular components or their presence in the IRVs is explained by mass action (Pilch, 2008 ), inefficient sorting, or other reasons.Deciphering of the protein composition of the IRVs is important because it is likely to explain their unique functional property: translocation to the plasma membrane in response to insulin stimulation. Even if we presume that IRV trafficking is controlled by loosely associated peripheral membrane proteins, the latter should still somehow recognize the core vesicular components that create the “biochemical individuality” of this compartment. In spite of our knowledge of the IRV protein composition, however, the identity of the protein(s) that confer insulin sensitivity to these vesicles is unknown.Insulin responsiveness of the IRVs was associated with either IRAP or Glut4. Thus it was shown that Glut4 interacted with the intracellular anchor TUG (Bogan et al., 2003 , 2012 ), whereas IRAP associated with other proteins implemented in the regulation of Glut4 translocation, such as AS160 (Larance et al., 2005 ; Peck et al., 2006 ), p115 (Hosaka et al., 2005 ), tankyrase (Yeh et al., 2007 ), and several others (reviewed in Bogan, 2012 ). Results of these studies, or at least their interpretations, are not necessarily consistent with each other, as the existence of multiple independent anchors for the IRVs is, although possible, unlikely.Ablation of the individual IRV proteins has also led to controversial data. Thus knockout of IRAP decreases total protein levels of Glut4 but does not affect its translocation in the mouse model (Keller et al., 2002 ). On the contrary, knockdown of IRAP in 3T3-L1 adipocytes has a strong inhibitory effect on translocation of Glut4 (Yeh et al., 2007 ). In yet another study, knockdown of IRAP in 3T3-L1 adipocytes did not affect insulin-stimulated translocation of Glut4 but increased its plasma membrane content under basal conditions (Jordens et al., 2010 ). By the same token, total or partial ablation of Glut4 had various effects on expression levels, intracellular localization, and translocation of IRAP (Jiang et al., 2001 ; Abel et al., 2004 ; Carvalho et al., 2004 ; Gross et al., 2004 ; Yeh et al., 2007 ). Knockdown of either sortilin or LRP1 decreased protein levels of Glut4 (Shi and Kandror, 2005 ; Jedrychowski et al., 2010 ).One model that might explain these complicated and somewhat inconsistent results is that depletion of either major integral protein of the IRVs disrupts the network of interactions between vesicular proteins and thus decreases the efficiency of protein sorting into the IRVs (Kandror and Pilch, 2011 ). Correspondingly, the remaining IRV components that cannot be faithfully compartmentalized in the vesicles are either degraded (Jiang et al., 2001 ; Keller et al., 2002 ; Abel et al., 2004 ; Carvalho et al., 2004 ; Shi and Kandror, 2005 ; Yeh et al., 2007 ; Jedrychowski et al., 2010 ) or mistargeted (Jiang et al., 2001 ; Jordens et al., 2010 ), depending on experimental conditions and types of cells used in these studies. In other words, knockdown of any major IRV component may decrease vesicle formation along with insulin responsiveness. Thus, in spite of a large body of literature, the identity of protein(s) that confer insulin responsiveness to the IRVs is unknown.Here we used a gain-of-function approach to address this question. Specifically, we attempted to “build” functional IRVs in undifferentiated 3T3-L1 preadipocytes by forced expression of the relevant proteins. Undifferentiated preadipocytes do not express Glut4 or sortilin and lack IRVs (ElJack et al., 1999 ; Shi and Kandror, 2005 ; Shi et al., 2008 ). Correspondingly, IRAP, which is expressed in these cells, shows low insulin response (Ross et al., 1998 ; Shi et al., 2008 ). We found that ectopic expression of increasing amounts of Glut4 in undifferentiated preadipocytes does not lead to its marked translocation to the plasma membrane upon insulin stimulation. On the contrary, sortilin expressed in undifferentiated preadipocytes was localized in the IRVs and was translocated to the plasma membrane in response to insulin stimulation. Moreover, upon coexpression with Glut4, sortilin dramatically increased its insulin responsiveness to the levels observed in fully differentiated adipocytes. Thus sortilin may represent the key component of the IRVs, which is responsible not only for the formation of vesicles (Shi and Kandror, 2005 ; Ariga et al., 2008 ; Hatakeyama and Kanzaki, 2011 ), but also for their insulin responsiveness. It is worth noting that sortilin levels are significantly decreased in obese and diabetic humans and mice (Kaddai et al., 2009 ). We thus suggest that sortilin may be a novel and important target in the fight against insulin resistance and diabetes.Our experiments also demonstrate that undifferentiated preadipocytes lack a mechanism for the full intracellular retention of Glut4 that can be achieved by ectopic expression of AS160/TBC1D4.  相似文献   
80.
Neural epidermal growth factor-like protein-like 2 (NELL2) is a secreted glycoprotein that is predominantly expressed in the nervous system, but little is known about the intracellular movement and secretion mechanism of this protein. By monitoring the localization and movements of enhanced green fluorescent protein (EGFP)-labeled NELL2 in living cultured hippocampal neuroprogenitor HiB5 cells, we determined the subcellular localization of NELL2 and its intracellular movement and secretion mechanism. Cterminal EGFP-fused NELL2 showed a typical expression pattern of secreted proteins, especially with respect to its localization in the endoplasmic reticulum, Golgi apparatus, and punctate structures. Vesicles containing NELL2 exhibited bidirectional movement in HiB5 cells. The majority of the vesicles (70.1%) moved in an anterograde direction with an average velocity of 0.454 μm/s, whereas some vesicles (28.7%) showed retrograde movement with an average velocity of 0.302 μm/s. The movement patterns of NELL2 vesicles were dependent upon the presence of microtubules in HiB5 cells. Anterograde movement of NELL2 did not lead to a detectable accumulation of NELL2 in the peripheral region of the cell, indicating that it was secreted into the culture medium. We also showed that the N-terminal 29 amino acids of NELL2 were important for secretion of this protein. Taken together, these results strongly suggest that the N-terminal region of NELL2 determines both the pattern of its intracellular expression and transport of NELL2 vesicles by high-velocity movement. Therefore, NELL2 may affect the cellular activity of cells in a paracrine or autocrine manner.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号