首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   100291篇
  免费   1030篇
  国内免费   1584篇
  2024年   16篇
  2023年   83篇
  2022年   143篇
  2021年   361篇
  2020年   263篇
  2019年   309篇
  2018年   12068篇
  2017年   10869篇
  2016年   7720篇
  2015年   1062篇
  2014年   850篇
  2013年   894篇
  2012年   4867篇
  2011年   13314篇
  2010年   12310篇
  2009年   8526篇
  2008年   10147篇
  2007年   11692篇
  2006年   579篇
  2005年   785篇
  2004年   1249篇
  2003年   1243篇
  2002年   1042篇
  2001年   453篇
  2000年   327篇
  1999年   173篇
  1998年   140篇
  1997年   120篇
  1996年   90篇
  1995年   75篇
  1994年   71篇
  1993年   81篇
  1992年   73篇
  1991年   77篇
  1990年   39篇
  1989年   26篇
  1988年   43篇
  1987年   35篇
  1986年   11篇
  1985年   13篇
  1984年   36篇
  1983年   24篇
  1982年   8篇
  1972年   246篇
  1971年   274篇
  1965年   13篇
  1962年   24篇
  1956年   5篇
  1944年   12篇
  1940年   10篇
排序方式: 共有10000条查询结果,搜索用时 187 毫秒
991.
992.
Metal doped ZnO nanomaterials have attracted considerable attention as a chemical sensor for toxic gases. Here, the electronic sensitivity of pristine and Sc-, Ti-, V-, Cr-, Mn-, and Fe-doped Zn12O12 nanoclusters toward CO gas is investigated using density functional theory calculations. It is found that replacing a Zn atom by a Sc or Ti atom does not change the sensitivity of cluster but doping V and Cr atoms significantly increase the sensitivity. Also, Mn, or Fe doping slightly improves the sensitivity. It is predicted that among all, the Cr-doped ZnO cluster may be the most favorable sensor for CO detection because its electrical conductivity considerably changes after the CO adsorption, thereby, generating an electrical signal. The calculated Gibbs free energy change for the adsorption of CO molecule on the Cr-doped cluster is about -51.2 kcal mol-1 at 298.15 K and 1 atm, and the HOMO-LUMO gap of the adsorbent is changed by about 117.8 %.  相似文献   
993.
With increasing computational capabilities, an ever growing amount of data is generated in computational chemistry that contains a vast amount of chemically relevant information. It is therefore imperative to create new computational tools in order to process and extract this data in a sensible way. Kudi is an open source library that aids in the extraction of chemical properties from reaction paths. The straightforward structure of Kudi makes it easy to use for users and allows for effortless implementation of new capabilities, and extension to any quantum chemistry package. A use case for Kudi is shown for the tautomerization reaction of formic acid. Kudi is available free of charge at www.github.com/stvogt/kudi  相似文献   
994.
995.
The initial reaction mechanisms for depositing ZrO2 thin films using ansa-metallocene zirconium (Cp2CMe2)ZrMe2 precursor were studied by density functional theory (DFT) calculations. The (Cp2CMe2)ZrMe2 precursor could be absorbed on the hydroxylated Si(1 0 0) surface via physisorption. Possible reaction pathways of (Cp2CMe2)ZrMe2 were proposed. For each reaction, the activation energies and reaction energies were compared, and stationary points along the reaction pathways were shown. In addition, the influence of dispersion effects on the reactions was evaluated by non-local dispersion corrected DFT calculations.  相似文献   
996.
Titanium dioxide (TiO2) is an important metal oxide that has been used in many different applications. TiO2 has also been widely employed as a model system to study basic processes and reactions in surface chemistry and heterogeneous catalysis. In this work, we investigated the (011) surface of rutile TiO2 by focusing on its reconstruction. Density functional theory calculations aided by a genetic algorithm based optimization scheme were performed to extensively sample the potential energy surfaces of reconstructed rutile TiO2 structures that obey (2?×?1) periodicity. A lot of stable surface configurations were located, including the global-minimum configuration that was proposed previously. The wide variety of surface structures determined through the calculations performed in this work provide insight into the relationship between the atomic configuration of a surface and its stability. More importantly, several analytical schemes were proposed and tested to gauge the differences and similarities among various surface structures, aiding the construction of the complete pathway for the reconstruction process.  相似文献   
997.
Multilayer-shaped compression and slide models were employed to investigate the complex sensitive mechanisms of cocrystal explosives in response to external mechanical stimuli. Here, density functional theory (DFT) calculations implementing the generalized gradient approximation (GGA) of Perdew-Burke-Ernzerhof (PBE) with the Tkatchenko-Scheffler (TS) dispersion correction were applied to a series of cocrystal explosives: diacetone diperoxide (DADP)/1,3,5-trichloro-2,4,6-trinitrobenzene (TCTNB), DADP/1,3,5-tribromo-2,4,6-trinitrobenzene (TBTNB) and DADP/1,3,5-triiodo-2,4,6-trinitrobenzene (TITNB). The results show that the GGA-PBE-TS method is suitable for calculating these cocrystal systems. Compression and slide models illustrate well the sensitive mechanism of layer-shaped cocrystals of DADP/TCTNB and DADP/TITNB, in accordance with the results from electrostatic potentials and free space per molecule in cocrystal lattice analyses. DADP/TCTNB and DADP/TBTNB prefer sliding along a diagonal direction on the a?c face and generating strong intermolecular repulsions, compared to DADP/TITNB, which slides parallel to the b?c face. The impact sensitivity of DADP/TBTNB is predicted to be the same as that of DADP/TCTNB, and the impact sensitivity of DADP/TBTNB may be slightly more insensitive than that of DADP and much more sensitive than that of TBTNB.
Graphical Abstract Theoretical insights into the sensitive mechanism of multilayer-shaped cocrystal explosives: compression and slide
  相似文献   
998.
Theoretical chemistry calculations using the Density Functional Theory (DFT) were carried out to understand the interaction between oxygen (O2) and MnN4 type manganese-based complexes during the formation of MnN4-O2 adducts. In order to understand how this interaction is affected by different macrocyclic ligands, O2 was bonded to manganese-porphyrin (MnP), manganese-octamethylporphyrin (MnOMP), manganese-tetraaza[14]annulene (MnTAA), manganese-dibenzo [b,i] [1, 4, 8, 11]-tetraaza [14] annulene (MnDBTAA), manganese-2,3,9,10-tetramethyl-1,4,8,11-tetraazacyclotetradeca-1,3,8,10-tetraene ([(tim)Mn]2+), and manganese-2,3,9,10-tetraphenyl-1,4,8,11-tetraazacyclotetradeca-1,3,8,10-tetraene ([(ph-tim)Mn]2+). The binding and activation of the oxygen molecule was facilitated by an increasing trend in the O-O bond lengths and a decreasing one in the O-O vibrational frequency, with preference for the O2 side-on interaction among MnN4 macrocycles. The catalytic activities of the MnN4 complexes toward the O2 binding process increased in the following order: [(ph-tim)Mn]2+?<?MnP?<?MnOMP?<?MnDBTAA?<?MnTAA?<?[(tim)Mn]2+. Therefore, it was concluded that the [(tim)Mn]2+complex was the most active for the binding and activation of molecular oxygen.  相似文献   
999.
The factors that explain the competition between intramolecular NO linkage photoisomerization and NO photorelease in five ruthenium nitrosyl complexes were investigated. By applying DFT-based methods, it was possible to characterize the ground states and lowest triplet potential energy surfaces of these species, and to establish that both photoisomerization and photorelease processes can occur in the lowest triplet state of each species. This work highlights the crucial role of the sideways-bonded isomer, a metastable state also known as the MS2 isomer, in the photochemical loss of NO, while the results obtained also indicate that the population of the triplet state of this isomer is compulsory for both processes and show how photoisomerization and photorelease interfere.
Graphical Abstract Illustration of the crucial role of the 3MS2 state in the photoreactivities of ruthenium nitrosyl complexes
  相似文献   
1000.
Human immunodeficiency virus (HIV) infections continue to exert an enormous impact on global human health. This led experts to emphasize the importance of new measures for preventing HIV infections, including the development of vaccines and novel drugs. In this context, a promising approach involves the use of lectins that can bind the surface envelope glycoprotein gp120 of HIV with high affinity, preventing viral entry. The cyanobacterial lectin microvirin (MVN) has been proposed as a candidate for development as a topical microbicide because of its ability to bind to high mannose-type glycans, potently inhibiting HIV-1 entry. Thus, the aim of this computational study was to investigate the effects of four point mutations (D53Q, D53E, D53K, and D53W) on the structure and affinity of MVN with di-mannose (MAN). Molecular dynamics simulations followed by binding free energy calculations using MM-GBSA were employed. The calculated binding free energy of ligand-receptor complexation of MVN with MAN was ?26.02 kcal mol-1. We identified in the wild-type protein that residues I45, T59, and Q81 have a major contribution to the binding free energy of di-mannose. Among the investigated mutants, the most promising one was the D53W mutation, with a theoretical binding free energy value of ?29.16 kcal mol-1. We suggest that this increased stability is due to the introduction of extra rigidity on the hinge region connecting two key structural elements of the MVN binding site.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号