首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   507篇
  免费   82篇
  2019年   3篇
  2018年   5篇
  2017年   3篇
  2016年   8篇
  2015年   9篇
  2014年   5篇
  2013年   14篇
  2012年   11篇
  2011年   11篇
  2010年   9篇
  2009年   6篇
  2008年   12篇
  2007年   18篇
  2006年   17篇
  2005年   18篇
  2004年   21篇
  2003年   17篇
  2002年   15篇
  2001年   24篇
  2000年   23篇
  1999年   14篇
  1998年   12篇
  1997年   8篇
  1996年   7篇
  1995年   5篇
  1992年   16篇
  1991年   7篇
  1990年   11篇
  1989年   10篇
  1988年   10篇
  1987年   13篇
  1986年   12篇
  1985年   13篇
  1984年   9篇
  1983年   7篇
  1982年   11篇
  1981年   3篇
  1980年   8篇
  1979年   9篇
  1978年   13篇
  1977年   7篇
  1976年   3篇
  1975年   5篇
  1973年   3篇
  1972年   5篇
  1970年   19篇
  1969年   18篇
  1968年   21篇
  1967年   22篇
  1966年   12篇
排序方式: 共有589条查询结果,搜索用时 15 毫秒
41.
The group I intron (AnCOB) of the mitochondrial apocytochrome b gene from Aspergillus nidulans encodes a bi-functional maturase protein that is also a DNA endonuclease. Although the AnCOB intron self-splices, the encoded maturase protein greatly facilitates splicing, in part, by stabilizing RNA tertiary structure. To determine their role in self-splicing and in protein-assisted splicing, several peripheral RNA sub-domains in the 313 nucleotide intron were deleted (P2, P9, P9.1) or truncated (P5ab, P6a). The sequence in two helices (P2 and P9) was also inverted. Except for P9, the deleted regions are not highly conserved among group I introns and are often dispensable for catalytic activity. Nevertheless, despite the very tight binding of AnCOB RNA to the maturase and the high activity of the bimolecular complex (the rate of 5' splice-site cleavage was >20 min(-1) with guanosine as the cofactor), the intron was surprisingly sensitive to these modifications. Several mutations inactivated splicing completely and virtually all impaired splicing to varying degrees. Mutants containing comparatively small deletions in various regions of the intron significantly decreased binding affinity (generally >10(4)-fold), indicating that none of the domains that remained constitutes the primary recognition site of the maturase. The data argue that tight binding requires tertiary interactions that can be maintained by only a relatively intact intron RNA, and that the binding mechanism of the maturase differs from those of two other well-characterized group I intron splicing factors, CYT-18 and Cpb2. A model is proposed in which the protein promotes widespread cooperative folding of an RNA lacking extensive initial tertiary structure.  相似文献   
42.
Incorporation of modified nucleotides into DNA, using the PCR, has allowed us to probe the influence that the exocyclic 5-methyl group of pyrimidines has on DNAse I cleavage and sequence recognition by drugs. The results show that removal of the methyl group from the major groove, made possible by substituting uridine for thymidine, allows DNAse I to cleave more readily at AT-rich regions compared to normal DNA. By contrast, addition of an extra methyl group, contrived by substituting 5-methylcytidine for normal cytidine, allows DNAse I to cleave more readily at GC-rich regions compared to normal DNA. In the cutting pattern of DNA containing both uridine and 5-methyl cytosine, we find the cleavage characteristics of both the single-substituted DNA species combined. Thus, the presence or absence of the exocyclic 5-methyl group in the major groove has a strong influence on the relative intensity of cleavage of phosphodiester bonds by DNAse I. These nucleotide substitutions can also influence the sequence-selective binding of drugs to DNA. Whereas removal of the methyl group (replacement of T with U) generally has little effect on sequence recognition by a variety of drugs, addition of a methyl group (replacement of C with M) generates new binding sites for some intercalators, namely daunomycin, DACA and SN16713.  相似文献   
43.
Neuronal phospholipase D (PLD) activity was hypothesized to be involved in vesicle trafficking and endocytosis and, possibly, transmitter release. We here report that prolonged depolarization of rat hippocampal slices by potassium chloride (KCl) or 4-aminopyridine inhibited PLD activity. Similarly, PLD activity in rat cortical synaptosomes was significantly inhibited by depolarizing agents including veratridine and ouabain. Inhibition of calcium/calmodulin kinase II (CaMKII) which positively modulates synaptosomal PLD activity [Sarri et al. (1998) FEBS Lett. 440, 287-290] by KN-62 caused a further reduction of PLD activity in depolarized synaptosomes. Depolarization-induced inhibition of PLD activity was apparently not due to transmitter release or activation of other kinases. We observed, however, that KCl-induced depolarization caused an increase of inositol phosphates and a reduction of the synaptosomal pool of phosphatidylinositol-4, 5-bisphosphate (PIP(2)). Moreover, in synaptosomes permeabilized with Staphylococcus aureus alpha-toxin, PLD activation induced by calcium was abolished by neomycin, a PIP(2) chelator. We conclude that depolarizing conditions cause an inhibition of neuronal PLD activity which is likely due to breakdown of PIP(2), a required cofactor for PLD activity. Our findings suggest that neuronal PLD activity is regulated by synaptic activity.  相似文献   
44.
Structural and functional studies assessed the membrane actions of the N terminus of HIV-1 glycoprotein 41000 (gp41). Earlier site-directed mutagenesis has shown that key amino acid changes in this gp41 domain inhibit viral infection and syncytia formation. Here, a synthetic peptide corresponding to the N terminus of gp41 (FP; 23 residues, 519-541), and also FP analogs (FP520V/E with Val-->Glu at residue 520; FP527L/R with Leu-->Arg at 527; FP529F/Y with Phe-->Tyr at 529; and FPCLP1 with FP truncated at 525) incorporating these modifications were prepared. When added to human erythrocytes at physiologic pH, the lytic and aggregating activities of the FP analogs were much reduced over those with the wild-type FP. With resealed human erythrocyte ghosts, the lipid-mixing activities of the FP analogs were also substantially depressed over that with the wild-type FP. Combined with results from earlier studies, theoretical calculations using hydrophobic moment plot analysis and physical experiments using circular dichroism and Fourier transform infrared spectroscopy indicate that the diminished lysis and fusion noted for FP analogs may be due to altered peptide-membrane lipid interactions. These data confirm that the N-terminal gp41 domain plays critical roles in the cytolysis and fusion underlying HIV-cell infection.  相似文献   
45.
46.
47.
48.
BACKGROUND: There are several reports that indicate a linkage between exposure to power frequency (50 - 60 Hz) magnetic fields with abnormalities in the early embryonic development of the chicken. The present study was designed to understand whether power frequency electromagnetic fields could act as an environmental insult and invoke any neurochemical or toxicological changes in developing chick embryo model. METHODS: Fertilized chicken eggs were subjected to continuous exposure to magnetic fields (50 Hz) of varying intensities (5, 50 or 100 microT) for a period of up to 15 days. The embryos were taken out of the eggs on day 5, day 10 and day 15. Neurochemical (norepinephrine and 5-hydroxytryptamine) and amino acid (tyrosine, glutamine and tryptophan) contents were measured, along with an assay of the enzyme glutamine synthetase in the brain. Preliminary toxicological investigations were carried out based on aminotransferases (AST and ALT) and lactate dehydrogenase activities in the whole embryo as well as in the liver. RESULTS: The study revealed that there was a significant increase (p < 0.01 and p < 0.001) in the level of norepinephrine accompanied by a significant decrease (p < 0.01 and p < 0.001) in the tyrosine content in the brain on day 15 following exposure to 5, 50 and 100 microT magnetic fields. There was a significant increase (p < 0.001) in glutamine synthetase activity resulting in the significantly enhanced (p < 0.001) level of glutamine in the brain on day 15 (for 100 microT only). The possible mechanisms for these alterations are discussed. Further, magnetic fields had no effect on the levels of tryptophan and 5-hydroxytryptamine in the brain. Similarly, there was no effect on the activity of either aminotransferases or lactate dehydrogenase in the whole embryo or liver due to magnetic field exposure. CONCLUSIONS: Based on these studies we conclude that magnetic field-induced changes in norepinephrine levels might help explain alterations in the circadian rhythm, observed during magnetic field stress. Also, the enhanced level of glutamine can act as a contributing factor for developmental abnormalities.  相似文献   
49.
Plasmids have been described in almost all bacterial species analysed and have proven to be essential genetic tools. In many bacteria these extrachromosomal DNAs are cryptic with no known markers or function, which makes their characterization and genetic exploitation extremely difficult. Here we describe a system that will allow the rescue of any circular DNA (plasmid or phage) using an in vitro transposition system to deliver both a selectable marker (kanamycin) and an Escherichia coli plasmid origin of replication. In this study, we demonstrate the rescue of four cryptic plasmids from the opportunistic pathogen Mycobacterium avium. To evaluate the host range of the rescued plasmids, we have examined their ability to be propagated in Mycobacterium smegmatis and Mycobacterium bovis BCG, and their compatibility with other mycobacterial plasmids. In addition, we use a library of transposon insertions to sequence one plasmid, pVT2, and to begin a genetic analysis of plasmid genes. Using this approach, we identified a putative conjugative relaxase, suggesting this myco-bacterial plasmid is transferable, and three genes required for plasmid establishment and replication.  相似文献   
50.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号