首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10917篇
  免费   1014篇
  国内免费   8篇
  2021年   96篇
  2019年   82篇
  2018年   113篇
  2017年   126篇
  2016年   181篇
  2015年   340篇
  2014年   323篇
  2013年   442篇
  2012年   584篇
  2011年   534篇
  2010年   381篇
  2009年   309篇
  2008年   496篇
  2007年   515篇
  2006年   458篇
  2005年   541篇
  2004年   476篇
  2003年   454篇
  2002年   439篇
  2001年   178篇
  2000年   154篇
  1999年   162篇
  1998年   154篇
  1997年   115篇
  1996年   102篇
  1995年   110篇
  1994年   93篇
  1993年   130篇
  1992年   128篇
  1991年   138篇
  1990年   131篇
  1989年   140篇
  1988年   137篇
  1987年   109篇
  1986年   117篇
  1985年   89篇
  1984年   96篇
  1983年   88篇
  1982年   90篇
  1981年   122篇
  1980年   95篇
  1979年   117篇
  1978年   106篇
  1977年   99篇
  1975年   83篇
  1974年   107篇
  1973年   112篇
  1972年   86篇
  1970年   96篇
  1969年   86篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
81.
Barley (Hordeum vulgare L.) and tomato Lycopersicon esculentum Mill.) were grown hydroponically and examined 2, 5, and 10 d after being deprived of nitrogen (N) supply. Leaf elongation rate declined in both species in response to N stress before there was any reduction in rate of dryweight accumulation. Changes in water transport to the shoot could not explain reduced leaf elongation in tomato because leaf water content and water potential were unaffected by N stress at the time leaf elongation began to decline. Tomato maintained its shoot water status in N-stressed plants, despite reduced water absorption per gram root, because the decline in root hydraulic conductance with N stress was matched by a decline in stomatal conductance. In barley the decline in leaf elongation coincided with a small (8%) decline in water content per unit area of young leaves; this decline occurred because root hydraulic conductance was reduced more strongly by N stress than was stomatal conductance. Nitrogen stress caused a rapid decline in tissue NO 3 - pools and in NO 3 - flux to the xylem, particularly in tomato which had smaller tissue NO 3 - reserves. Even in barley, tissue NO 3 - reserves were too small and were mobilized too slowly (60% in 2 d) to support maximal growth for more than a few hours. Organic N mobilized from old leaves provided an additional N source to support continued growth of N-stressed plants. Abscisic acid (ABA) levels increased in leaves of both species within 2 d in response to N stress. Addition of ABA to roots caused an increase in volume of xylem exudate but had no effect upon NO 3 - flux to the xylem. After leaf-elongation rate had been reduced by N stress, photosynthesis declined in both barley and tomato. This decline was associated with increased leaf ABA content, reduced stomatal conductance and a decrease in organic N content. We suggest that N stress reduces growth by several mechanisms operating on different time scales: (1) increased leaf ABA content causing reduced cell-wall extensibility and leaf elongation and (2) a more gradual decline in photosynthesis caused by ABA-induced stomatal closure and by a decrease in leaf organic N.Abbreviation and symbols ABA abscisic acid - ci leaf internal CO2 concentration - Lp root hydraulic conductance  相似文献   
82.
To study the possible mechanism of microtubule turnover in interphase cells, we have used the 266-nm wavelength of a short-pulsed Nd/YAG laser to transect microtubules in situ in PtK2 cells at predefined regions. The regrowth and shrinkage of the transected microtubules have been examined by staining the treated cells with antitubulin mAb at various time points after laser irradiation. The results demonstrate that microtubules grow back into the transected zones individually; neither simultaneous growth nor shrinkage of all microtubules has been observed. The half-time of replacement of laser-dissociated microtubules is observed to be approximately 10 min. On the other hand, exposure of the core of the microtubule, which is expected to consist almost completely of GDP-tubulin, by transecting the internal regions of the microtubule does not render the remaining polymer catastrophically disassembled, and most transected microtubules with free minus ends do not quickly disappear. Taken together, these results suggest that most microtubules in cultured interphase cells exhibit some properties of dynamic instability (individual regrowth or shrinkage); however, other factors in addition to the hydrolysis of GTP-tubulin need to be involved in modulating the dynamics and the stability of these cytoplasmic microtubules.  相似文献   
83.
Recent studies have identified cell-associated proteins that are membrane anchored by glycosyl-inositol-phospholipid structures but the biologic implications of this mode of membrane attachment are incompletely understood. Among proteins anchored in this way is the decay-accelerating factor (DAF), a complement (C) regulatory factor that functions on blood cell surfaces to prevent autologous C attack. As one approach to investigate the functional consequences of glycosyl-inositol-phospholipid-anchoring of DAF in T lymphocytes, the effects of crosslinking surface DAF molecules were compared to those of crosslinking conventionally by anchored cluster of differentiation (CD) proteins. Upon incubation with anti-DAF mAb and anti-murine IgG, DAF re-distributed to a pole of the cell with a t1/2 at 37 degrees C of 4.4 min as compared to t1/2 of 3.5 to 7 min for CD3, CD4, and CD8. Re-distribution of DAF occurred independently of CD2, CD3, CD4, or CD8. Anti-DAF immunoprecipitates of membrane extracts of cells chemically cross-linked with dithiobis(succinimidylpropionate) contained only monomeric DAF. Immunofluorescent staining demonstrated clustered actin, tubulin, and vimentin beneath the capped DAF protein. Pre-treatment of cells with colchicine or 8-azidoadenosine 3',5'-cyclic phosphate, but not lumicolchicine, resulted in reduction of the t1/2 for DAF to 1 to 2.6 min. Conversely, treatment of cells with cytochalasins B or D completely blocked DAF capping. The results indicate that, upon cross-linking, glycosyl-inositol-phospholipid-anchored DAF molecules undergo capping similar to conventionally anchored CD molecules and that DAF capping is associated with cytoskeletal reorganization.  相似文献   
84.
Centrosomes undergo cell cycle-dependent changes in shape and separations, changes that govern the organization of the cytoskeleton. The cytoskeleton is largely organized by the centrosome; however, this investigation explores the importance of cytoskeletal elements in directing centrosome shape. Since the sea urchin egg during fertilization and mitosis displays dramatic and synchronous changes in centrosome shape, the effects of cytoskeletal inhibitors on centrosome compaction, expansion, and separation were explored by the use of anticentrosome immunofluorescence microscopy. Centrosome expansion and separation was studied during two phases: the transition after sperm incorporation, when the compact sperm centrosome enlarges and the sperm aster develops, and from prometaphase to telophase, when the compact spindle poles enlarge. Compaction was investigated when the dispersed centrosome at interphase condenses into the two spindle poles at prometaphase. Although centrosome expansion and separation typically occur concurrently, beta-mercaptoethanol results in centrosome separation independent of expansion. Microtubule inhibitors prevent centrosome expansion and separation, and expanded centrosomes collapse. Since pronuclear union is arrested by microtubule inhibitors, this treatment also affords the opportunity to explore the relative attractiveness of the male and female pronuclei for these centrosomal antigens. Both pronuclei acquire centrosomal material; though only the male centrosome is capable of organizing a functional bipolar mitotic apparatus at first division, the female centrosome nucleates a monaster. Microfilament inhibition (cytochalasin D) prevents centrosome separation but not expansion or compaction. These results demonstrate that as the centrosome shapes the cytoskeleton, the cytoskeleton alters centrosome shape.  相似文献   
85.
86.
87.
Multispecific cytosine C5 DNA methyltransferases (MTases) methylate more than one specific DNA target. This is due to the presence of several target recognizing domains (TRDs) in these enzymes. Such TRDs form part of a variable centre in the MTase primary sequence, which separates conserved enzyme core sequences responsible for general steps in the methylation reaction. By deleting, rearranging and exchanging several TRDs of multispecific MTases, we demonstrate their modular character; they mediate target recognition independent of a particular TRD or core sequence context. We show also that multispecific MTases can accommodate inert material of non-MTase origin within their variable region without losing their activity. The remarkable plasticity with respect to the material that can be integrated into this region suggests that the enzyme core sequences preceding or following it form separable functional domains. In spite of the documented flexibility multispecific MTases could not be endowed with novel specificities by integration of putative TRDs of monospecific MTases, pointing to differences between multi- and monospecific MTases in the way their core and TRD sequences interact.  相似文献   
88.
Summary Serial sections of resting porcine endometrium were analyzed with the monoclonal antibody 13H2 using goat antimouse IgG/5 nm gold as secondary reagent or with either polyclonal antibodies from goat #402 or the rat monoclonal antibody H222, both in combination with protein G/12 nm gold. A modestly higher labelling of nuclei than of cytoplasm was seen only with the monoclonal antibody H222. Polyclonal #402 and monoclonal 13H2 showed fewer attachments over nuclear than over cytoplasmic areas. The highest densities of attachment and of predominantly cytoplasmic labelling were obtained with the monoclonal antibody 13H2. The results confirm the earlier assumption of a restricted accessiblity of estradiol receptor in the cytoplasm of resting cells for immunoreagents.  相似文献   
89.
The enzymes of the Bacillus subtilis BsuBI restriction/modification (R/M) system recognize the target sequence 5'CTGCAG. The genes of the BsuBI R/M system have been cloned and sequenced and their products have been characterized following overexpression and purification. The gene of the BsuBI DNA methyltransferase (M.BsuBI) consists of 1503 bp, encoding a protein of 501 amino acids with a calculated M(r) of 57.2 kD. The gene of the restriction endonuclease (R.BsuBI), comprising 948 bp, codes for a protein of 316 amino acids with a predicted M(r) of 36.2 kD. M.BsuBI modifies the adenine (A) residue of the BsuBI target site, thus representing the first A-N6-DNA methyltransferase identified in B. subtilis. Like R.PstI, R.BsuBI cleaves between the A residue and the 3' terminal G of the target site. Both enzymes of the BsuBI R/M system are, therefore, functionally identical with those of the PstI R/M system, encoded by the Gram negative species Providencia stuartii. This functional equivalence coincides with a pronounced similarity of the BsuBI/PstI DNA methyltransferases (41% amino acid identity) and restriction endonucleases (46% amino acid identity). Since the genes are also very similar (58% nucleotide identity), the BsuBI and PstI R/M systems apparently have a common evolutionary origin. In spite of the sequence conservation the gene organization is strikingly different in the two R/M systems. While the genes of the PstI R/M system are separated and transcribed divergently, the genes of the BsuBI R/M system are transcribed in the same direction, with the 3' end of the M gene overlapping the 5' end of the R gene by 17 bp.  相似文献   
90.
Summary The antitumor effects of chemotherapy, recombinant human interleukin-2 (IL-2), recombinant human interferon A/D (IFN), allogeneic human lymphokine-activated killer (LAK) cells, and antitumor monoclonal antibody (mAb), administered alone and in various combinations, were tested in athymic nude mice carrying human tumor xenografts. Treatment began 6–18 days after i.v. or i.p. inoculation of colorectal carcinoma or melanoma cell lines, when macroscopic growths were evident. Chemotherapy consisted of two or three courses of 5-fluorouracil (5-FU) or dacarbazine. IL-2 and/or IFN were administered three to five times weekly for 1–3 weeks, usually starting 2–5 days after chemotherapy. Human LAK cells were infused once or twice weekly for 2 or 3 weeks concurrently with IL-2. In some experiments, murine anticolorectal carcinoma mAb (SF25) was administered. In both tumor systems, chemotherapy alone or immunotherapy alone (IL-2, IL-2 + LAK cells, IFN, IL-2 + IFN ± LAK cells) had little or no therapeutic effects. Additive effects were obtained by combining chemotherapy with IL-2 and LAK cells or with IL-2 and IFN. In the majority of the experiments, the most effective combination was chemotherapy + IL-2 + IFN + LAK cells. Treatment with mAb was beneficial in the colorectal carcinoma system when combined with 5-FU + IL-2 or 5-FU + IL-2 + IFN. Homing experiments with radiolabeled human and mouse LAK cells injected i.v. showed increased early accumulation in the liver and lungs, whereas freshly explanted mouse splenocytes localized mostly in the spleen and liver. The tissue distribution pattern of human LAK cells was similar in normal and tumor-bearing mice (with lung metastases). These findings suggest that combination of chemotherapy with cytokines and LAK cells can be partially effective for advanced solid human tumors even in the absence of the host's T-cell immune response. Preliminary experiments showed that tumor-specific, anti-melanoma T-cell clones were effective in local (s.c.) tumor growth inhibition (Winn assay) following coinjection with the autologous tumor cells.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号