首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   184篇
  免费   14篇
  2021年   3篇
  2018年   3篇
  2017年   4篇
  2016年   3篇
  2015年   7篇
  2014年   10篇
  2013年   7篇
  2012年   7篇
  2011年   7篇
  2010年   9篇
  2009年   3篇
  2008年   9篇
  2007年   10篇
  2006年   13篇
  2005年   13篇
  2004年   6篇
  2003年   6篇
  2002年   5篇
  2001年   4篇
  2000年   3篇
  1999年   7篇
  1998年   3篇
  1995年   2篇
  1994年   2篇
  1993年   2篇
  1991年   4篇
  1990年   3篇
  1989年   2篇
  1987年   2篇
  1984年   3篇
  1983年   2篇
  1972年   1篇
  1968年   1篇
  1964年   1篇
  1963年   2篇
  1962年   4篇
  1960年   1篇
  1956年   2篇
  1955年   1篇
  1953年   1篇
  1951年   1篇
  1945年   1篇
  1941年   2篇
  1937年   1篇
  1934年   2篇
  1931年   1篇
  1926年   1篇
  1901年   1篇
  1897年   1篇
  1889年   1篇
排序方式: 共有198条查询结果,搜索用时 296 毫秒
61.
Summary Under the experimental conditions of this study no transfer of radiophosphorus occurred from one living plasmodium to another when a radioactive plasmodium ofPhysarum polycephalum and a non-radioactive plasmodium ofPhysarum gyrosum orFuligo septica were in intimate contact for 24 hours.This research constitutes a part of a program Experimental Approach to the Taxonomy of the Myxomycetes, supported by National Science Foundation Grant G-6382.  相似文献   
62.
Is there a role for copper in neurodegenerative diseases?   总被引:2,自引:0,他引:2  
Copper is an essential metal in living organisms; thus, the maintenance of adequate copper levels is of vital importance and is highly regulated. Dysfunction of copper metabolism leading to its excess or deficiency results in severe ailments. Two examples of illnesses related to alterations in copper metabolism are Menkes and Wilson diseases. Several proteins are involved in the maintenance of copper homeostasis, including copper transporters and metal chaperones. In the last several years, the beta-amyloid-precursor protein (beta-APP) and the prion protein (PrP(C)), which are related to the neurodegenerative disorders Alzheimer and prion diseases respectively, have been associated with copper metabolism. Both proteins bind copper through copper-binding domains that also have been shown to reduce copper in vitro. Moreover, this ability to reduce copper is associated with a neuroprotective effect exerted by the copper-binding domain of both proteins against copper in vivo. In addition to a functional link between copper and beta-APP or PrP(C), evidence suggests that copper has a role in Alzheimer and prion diseases. Here, we review the evidence that supports both, the role of beta-APP and PrP(C), in copper metabolism and the putative role of copper in neurodegenerative diseases.  相似文献   
63.
A mutation in gene MPN142 (orf6) was identified in the Mycoplasma pneumoniae cytadherence mutant III-4. MPN142 encodes virulence-specific proteins P90 and P40 (proteins B and C, respectively). Analysis of MPN142 in a cytadhering revertant and complementation using a recombinant wild-type allele confirmed the role of this mutation in the cytadherence defect.  相似文献   
64.
The main proteins associated with Alzheimer's and prion diseases (amyloid precursor protein (APP) and prion protein (PrP(C)), respectively, have binding sites for copper and it has therefore been suggested that they play a role in copper metabolism. Here, we review evidence indicating that the copper binding domains (CuBD) of APP and PrP(C) are able to modulate the oxidation state of copper, and prevent neurotoxic effects and memory impairments induced by copper. Results with transgenic and other animal models have established the relation between these pathogenic proteins and copper. In particular, APP transgenic models, suggest a beneficial effect for copper in AD.  相似文献   
65.
A line of block between the vena cava and the crista terminalis (CT) region is important for atrial flutter (AFL), but whether it is fixed or functional is controversial. To test the hypothesis that conduction across the CT normally occurs, but when block occurs in this region it is functional, we analyzed atrial activation during right and left atrial pacing (cycle lengths of 500--130 ms), AFL, and atrial fibrillation in 15 dogs with sterile pericarditis and 7 normal dogs. Electrograms from 396 right, left, and septal atrial sites were simultaneously recorded. Activation across the CT occurred during atrial pacing, AFL, and atrial fibrillation. Activation wave fronts from the right to the left atrium and vice versa traveled over several routes, including Bachmann's bundle and inferior to the inferior vena cava, as well as across the CT. In these models, there is no fixed conduction block across the CT, and when block in the CT region occurs, as during AFL, it is functional.  相似文献   
66.
RGS proteins (regulators of G protein signaling) attenuate heterotrimeric G protein signaling by functioning as both GTPase-activating proteins (GAPs) and inhibitors of G protein/effector interaction. RGS2 has been shown to regulate Galpha(q)-mediated inositol lipid signaling. Although purified RGS2 blocks PLC-beta activation by the nonhydrolyzable GTP analog guanosine 5'-O-thiophosphate (GTPgammaS), its capacity to regulate inositol lipid signaling under conditions where GTPase-promoted hydrolysis of GTP is operative has not been fully explored. Utilizing the turkey erythrocyte membrane model of inositol lipid signaling, we investigated regulation by RGS2 of both GTP and GTPgammaS-stimulated Galpha(11) signaling. Different inhibitory potencies of RGS2 were observed under conditions assessing its activity as a GAP versus as an effector antagonist; i.e. RGS2 was a 10-20-fold more potent inhibitor of aluminum fluoride and GTP-stimulated PLC-betat activity than of GTPgammaS-promoted PLC-betat activity. We also examined whether RGS2 was regulated by downstream components of the inositol lipid signaling pathway. RGS2 was phosphorylated by PKC in vitro to a stoichiometry of approximately unity by both a mixture of PKC isozymes and individual calcium and phospholipid-dependent PKC isoforms. Moreover, RGS2 was phosphorylated in intact COS7 cells in response to PKC activation by 4beta-phorbol 12beta-myristate 13alpha-acetate and, to a lesser extent, by the P2Y(2) receptor agonist UTP. In vitro phosphorylation of RGS2 by PKC decreased its capacity to attenuate both GTP and GTPgammaS-stimulated PLC-betat activation, with the extent of attenuation correlating with the level of RGS2 phosphorylation. A phosphorylation-dependent inhibition of RGS2 GAP activity was also observed in proteoliposomes reconstituted with purified P2Y(1) receptor and Galpha(q)betagamma. These results identify for the first time a phosphorylation-induced change in the activity of an RGS protein and suggest a mechanism for potentiation of inositol lipid signaling by PKC.  相似文献   
67.
68.
Tellurite, the most soluble tellurium oxyanion, is extremely harmful for most microorganisms. Part of this toxicity is due to the generation of reactive oxygen species that in turn cause oxidative stress. However, the way in which tellurite interferes with cellular processes is not well understood to date. Looking for new cellular tellurite targets, we decided to evaluate the functioning of the electron transport chain in tellurite-exposed cells. In this communication we show that the E. coli ndh gene, encoding NDH-II dehydrogenase, is significantly induced in toxicant-exposed cells and that the enzyme displays tellurite-reducing activity that results in increased superoxide levels in vitro.  相似文献   
69.
Wnt signaling has a crucial role in synaptic function at the central nervous system. Here we evaluate whether Wnts affect nitric oxide (NO) generation in hippocampal neurons. We found that non-canonical Wnt-5a triggers NO production; however, Wnt-3a a canonical ligand did not exert the same effect. Co-administration of Wnt-5a with the soluble Frizzled related protein-2 (sFRP-2) a Wnt antagonist blocked the NO production. Wnt-5a activates the non-canonical Wnt/Ca2+ signaling through a mechanism that depends on Ca2+ release from Ryanodine-sensitive internal stores. The increase in NO levels evoked by Wnt-5a promotes the insertion of the GluN2B subunit of the NMDA receptor (NMDAR) into the neuronal cell surface. To the best of our knowledge, this is the first time that Wnt-5a signaling is related to NO production, which in turn increases NMDARs trafficking to the cell surface.  相似文献   
70.
We assessed the reactivity of Sb(V) in human blood. Sb(V) reactivity was determined using an HPLC-HG-AFS hyphenated system. Sb(V) was partially reduced to Sb(III) in blood incubation experiments; however, Sb(III) was a highly unstable species. The addition of 0.1 mol L−1 EDTA prevented Sb(III) oxidation, thus enabling the detection of the reduction of Sb(V) to Sb(III). The transformation of Sb(V) to Sb(III) in human whole blood was assessed because the reduction of Sb(V) in human blood may likely generate redox side effects. Our results indicate that glutathione was the reducing agent in this reaction and that Sb(V) significantly decreased the GSH/GSSG ratio from 0.32±0.09 to 0.07±0.03. Moreover, the presence of 200 ng mL−1 of Sb(V) increased the activity of superoxide dismutase from 4.4±0.1 to 7.0±0.4 U mL−1 and decreased the activity of glutathione peroxidase from 62±1 to 34±2 nmol min−1 mL−1.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号