首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   209篇
  免费   15篇
  国内免费   2篇
  2021年   3篇
  2018年   4篇
  2017年   6篇
  2016年   2篇
  2015年   6篇
  2014年   12篇
  2013年   8篇
  2012年   13篇
  2011年   12篇
  2010年   10篇
  2009年   6篇
  2008年   11篇
  2007年   9篇
  2006年   13篇
  2005年   14篇
  2004年   6篇
  2003年   7篇
  2002年   6篇
  2001年   5篇
  2000年   3篇
  1999年   5篇
  1998年   8篇
  1995年   2篇
  1994年   2篇
  1991年   4篇
  1990年   3篇
  1989年   2篇
  1987年   2篇
  1984年   4篇
  1977年   2篇
  1974年   1篇
  1972年   1篇
  1968年   1篇
  1964年   1篇
  1963年   2篇
  1962年   4篇
  1960年   1篇
  1956年   2篇
  1955年   1篇
  1953年   1篇
  1951年   1篇
  1945年   1篇
  1941年   2篇
  1937年   1篇
  1934年   2篇
  1931年   1篇
  1926年   1篇
  1901年   1篇
  1897年   1篇
  1889年   1篇
排序方式: 共有226条查询结果,搜索用时 31 毫秒
21.
Existing protein tagging and detection methods are powerful but have drawbacks. Split protein tags can perturb protein solubility or may not work in living cells. Green fluorescent protein (GFP) fusions can misfold or exhibit altered processing. Fluorogenic biarsenical FLaSH or ReASH substrates overcome many of these limitations but require a polycysteine tag motif, a reducing environment and cell transfection or permeabilization. An ideal protein tag would be genetically encoded, would work both in vivo and in vitro, would provide a sensitive analytical signal and would not require external chemical reagents or substrates. One way to accomplish this might be with a split GFP, but the GFP fragments reported thus far are large and fold poorly, require chemical ligation or fused interacting partners to force their association, or require coexpression or co-refolding to produce detectable folded and fluorescent GFP. We have engineered soluble, self-associating fragments of GFP that can be used to tag and detect either soluble or insoluble proteins in living cells or cell lysates. The split GFP system is simple and does not change fusion protein solubility.  相似文献   
22.
We have improved our green fluorescent protein (GFP) folding reporter technology [Waldo et al., (1999) Nat. Biotechnol. 17, 691–695] to evolve recalcitrant proteins from Mycobacterium tuberculosis. The target protein is inserted into the scaffolding of the GFP, eliminating false-positive artifacts caused by expression of truncated protein variants from internal cryptic ribosome binding sites in the target RNA. In parallel, we have developed a new quantitative fluorescent protein tagging and detection system based on micro-domains of GFP. This split-GFP system, which works both in vivo and in vitro, is amenable to high-throughput assays of protein expression and solubility [Cabantous et al., (2005) Nat. Biotechnol. 23, 102–107]. Together, the GFP folding reporter and split-GFP technologies offer a comprehensive system for manipulating and improving protein folding and solubility.  相似文献   
23.
Understanding the mechanism of hepatitis C virus (HCV) pathogenesis is an important part of HCV research. Recent experimental evidence suggests that the HCV core protein (HCcAg) has numerous functional activities. These properties suggest that HCcAg, in concert with cellular factors, may contribute to pathogenesis during persistent HCV infection. HCV is capable of infecting cells other than hepatocytes. Although the extrahepatic cellular tropism of HCV may play a role in the pathophysiology of this infection, the precise biological significance of the presence of HCV components in different liver cell types presently remains to be established. In this study, HCcAg was detected in nonparenchymal liver cells of six patients out of eight positive for serum HCV RNA. Immunostaining with anti-HCcAg mAbs revealed the presence of this protein in different liver cell types such as lymphocytes, Kupffer, polymorphonuclear, pit, endothelial, stellate, and fibroblast-like cells. Interestingly, HCcAg was immunolabeled not only in the cytoplasm but also in the nucleus of these cells. Remarkably, HCcAg co-localized with large lipid droplets present in stellate cells and with collagen fibers in the extracellular matrix. Moreover, HCcAg was immunolabeled in bile canaliculus suggesting the involvement of the biliary system in the pathobiology of HCV. Data suggest that nonparenchymal liver cells may constitute a reservoir for HCV replication. Besides, HCcAg may contribute to modulate immune function and fibrosis in the liver as well as steatosis.  相似文献   
24.
25.
The anti-spreading activity of secreted protein acidic and rich in cysteine (SPARC) has been assigned to the C-terminal third domain, a region rich in alpha-helices. This "extracellular calcium-binding" (EC) domain contains two EF-hands that each coordinates one Ca2+ ion, forming a helix-loop-helix structure that not only drives the conformation of the protein but is also necessary for biological activity. Recombinant (r) EC, expressed in E. coli, was fused at the C-terminus to a His hexamer and isolated under denaturing conditions by nickel-chelate affinity chromatography. rEC-His was renatured by procedures that simultaneously (i) removed denaturing conditions, (ii) catalyzed disulfide bond isomerization, and (iii) initiated Ca2+-dependent refolding. Intrinsic tryptophan fluorescence and circular dichroism spectroscopies demonstrated that rEC-His exhibited a Ca2+-dependent conformation that was consistent with the known crystal structure. Spreading assays confirmed that rEC-His was biologically active through its ability to inhibit the spreading of freshly plated human urothelial cells propagated from transitional epithelium. rEC-His and rSPARC-His exhibited highly similar anti-spreading activities when measured as a function of concentration or time. In contrast to the wild-type and EC recombinant proteins, rSPARC(E268F)-His, a point substitution mutant at the Z position of EF-hand 2, failed to exhibit both Ca2+-dependent changes in alpha-helical secondary structure and anti-spreading activity. The collective data provide evidence that the motif of SPARC responsible for anti-spreading activity was dependent on the coordination of Ca2+ by a Glu residue at the Z position of EF-hand 2 and provide insights into how adhesive forces are balanced within the extracellular matrix of urothelial cells. .  相似文献   
26.
27.
1. Rapid expansion and intensification of anthropogenic activities in the 20th century has caused profound changes in freshwater assemblages. Unfortunately, knowledge of the extent and causes of species loss (SL) is limited due to the lack of reliable historical data. An unusual data set allows us to compare changes in the most sensitive of aquatic insect orders, the Plecoptera, at some 170 locations in the Czech Republic between two time periods, 1955–1960 and 2006–2010. Historical data (1890–1911) on assemblages of six lowland rivers allow us to infer even earlier changes. 2. Regional stonefly diversity decreased in the first half of the 20th century. Streams at lower altitudes lost a substantial number of species, which were never recovered. In the second half of the century, large‐scale anthropogenic pressure caused SL in all habitats, leading to a dissimilarity of contemporary and previous assemblages. The greatest changes were found at sites affected by organic pollution and a mixture of organic pollution and channelisation or impoundment. Colonisation of new habitats was observed in only three of the 80 species evaluated. 3. Species of moderate habitat specialisation and tolerance to organic pollution were most likely to be lost. Those with narrow specialisations in protected habitats were present in both historical and contemporary collections. 4. Contemporary assemblages are the consequence of more than a 100 years of anthropogenic impacts. In particular, streams at lower altitude and draining intensively exploited landscapes host a mere fragment of the original species complement. Most stonefly species are less frequently present than before, although their assemblages remain almost intact in near‐natural mountain streams. Our analyses demonstrate dramatic restriction of species ranges and, in some cases, apparent changes in altitudinal preference throughout the area.  相似文献   
28.
Bone tissue has an exceptional quality to regenerate to native tissue in response to injury. However, the fracture repair process requires mechanical stability or a viable biological microenvironment or both to ensure successful healing to native tissue. An improved understanding of the molecular and cellular events that occur during bone repair and remodeling has led to the development of biologic agents that can augment the biological microenvironment and enhance bone repair. Orthobiologics, including stem cells, osteoinductive growth factors, osteoconductive matrices, and anabolic agents, are available clinically for accelerating fracture repair and treatment of compromised bone repair situations like delayed unions and nonunions. Preclinical and clinical studies using biologic agents like recombinant bone morphogenetic proteins have demonstrated an efficacy similar or better than that of autologous bone graft in acute fracture healing. A lack of standardized outcome measures for comparison of biologic agents in clinical fracture repair trials, frequent off-label use, and a limited understanding of the biological activity of these agents at the bone repair site have limited their efficacy in clinical applications.  相似文献   
29.
Abstract

Using the Weeks-Chandler-Andersen separation of the intermolecular potential we have fitted computer simulation data for Lennard-Jones system for the whole phase plane to the same form expression but in two different ways: locally and globally. We compare the efficacy and the exactness of both methods.  相似文献   
30.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号