首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   232篇
  免费   50篇
  2023年   3篇
  2021年   1篇
  2020年   4篇
  2019年   5篇
  2017年   4篇
  2016年   3篇
  2015年   5篇
  2014年   6篇
  2013年   9篇
  2012年   8篇
  2011年   9篇
  2010年   11篇
  2009年   8篇
  2008年   14篇
  2007年   4篇
  2006年   6篇
  2005年   11篇
  2004年   11篇
  2003年   4篇
  2002年   13篇
  2001年   14篇
  2000年   10篇
  1999年   12篇
  1998年   9篇
  1997年   2篇
  1996年   11篇
  1995年   9篇
  1994年   2篇
  1993年   2篇
  1992年   3篇
  1991年   7篇
  1990年   6篇
  1989年   5篇
  1988年   7篇
  1987年   5篇
  1986年   5篇
  1985年   5篇
  1984年   2篇
  1982年   2篇
  1981年   3篇
  1980年   3篇
  1979年   3篇
  1978年   2篇
  1977年   6篇
  1976年   1篇
  1974年   1篇
  1972年   3篇
  1971年   1篇
  1969年   1篇
  1968年   1篇
排序方式: 共有282条查询结果,搜索用时 31 毫秒
21.
22.
BACKGROUND: There are several reports that indicate a linkage between exposure to power frequency (50 - 60 Hz) magnetic fields with abnormalities in the early embryonic development of the chicken. The present study was designed to understand whether power frequency electromagnetic fields could act as an environmental insult and invoke any neurochemical or toxicological changes in developing chick embryo model. METHODS: Fertilized chicken eggs were subjected to continuous exposure to magnetic fields (50 Hz) of varying intensities (5, 50 or 100 microT) for a period of up to 15 days. The embryos were taken out of the eggs on day 5, day 10 and day 15. Neurochemical (norepinephrine and 5-hydroxytryptamine) and amino acid (tyrosine, glutamine and tryptophan) contents were measured, along with an assay of the enzyme glutamine synthetase in the brain. Preliminary toxicological investigations were carried out based on aminotransferases (AST and ALT) and lactate dehydrogenase activities in the whole embryo as well as in the liver. RESULTS: The study revealed that there was a significant increase (p < 0.01 and p < 0.001) in the level of norepinephrine accompanied by a significant decrease (p < 0.01 and p < 0.001) in the tyrosine content in the brain on day 15 following exposure to 5, 50 and 100 microT magnetic fields. There was a significant increase (p < 0.001) in glutamine synthetase activity resulting in the significantly enhanced (p < 0.001) level of glutamine in the brain on day 15 (for 100 microT only). The possible mechanisms for these alterations are discussed. Further, magnetic fields had no effect on the levels of tryptophan and 5-hydroxytryptamine in the brain. Similarly, there was no effect on the activity of either aminotransferases or lactate dehydrogenase in the whole embryo or liver due to magnetic field exposure. CONCLUSIONS: Based on these studies we conclude that magnetic field-induced changes in norepinephrine levels might help explain alterations in the circadian rhythm, observed during magnetic field stress. Also, the enhanced level of glutamine can act as a contributing factor for developmental abnormalities.  相似文献   
23.
The organelle specific reactions that constitute the biosynthetic pathway for aminoglycerophospholipid synthesis provide an important means for examining the biochemistry and genetics of intracellular lipid transport. Biochemical studies with intact and permeabilized cells, and isolated organelles have defined some of the essential features of lipid transport between the endoplasmic reticulum and mitochondria and Golgi/vacuole. Genetic screens have now also identified mutations and genes that are involved in aminoglycerophospholipid traffic between different membranes in mammalian cells, yeast and bacteria. Increasingly, studies focused upon intermembrane lipid movement are revealing important new information about this essential aspect of membrane biogenesis.  相似文献   
24.
Surfactant proteins A and D (SP-A and SP-D) are lung collectins composed of two regions, a globular head domain that binds PAMPs and a collagenous tail domain that initiates phagocytosis. We provide evidence that SP-A and SP-D act in a dual manner, to enhance or suppress inflammatory mediator production depending on binding orientation. SP-A and SP-D bind SIRPalpha through their globular heads to initiate a signaling pathway that blocks proinflammatory mediator production. In contrast, their collagenous tails stimulate proinflammatory mediator production through binding to calreticulin/CD91. Together a model is implied in which SP-A and SP-D help maintain a non/anti-inflammatory lung environment by stimulating SIRPalpha on resident cells through their globular heads. However, interaction of these heads with PAMPs on foreign organisms or damaged cells and presentation of the collagenous tails in an aggregated state to calreticulin/CD91, stimulates phagocytosis and proinflammatory responses.  相似文献   
25.
Despite the critical role of pre-mRNA splicing in generating proteomic diversity and regulating gene expression, the sequence composition and function of intronic splicing regulatory elements (ISREs) have not been well elucidated. Here, we employed a high-throughput in vivo Screening PLatform for Intronic Control Elements (SPLICE) to identify 125 unique ISRE sequences from a random nucleotide library in human cells. Bioinformatic analyses reveal consensus motifs that resemble splicing regulatory elements and binding sites for characterized splicing factors and that are enriched in the introns of naturally occurring spliced genes, supporting their biological relevance. In vivo characterization, including an RNAi silencing study, demonstrate that ISRE sequences can exhibit combinatorial regulatory activity and that multiple trans-acting factors are involved in the regulatory effect of a single ISRE. Our work provides an initial examination into the sequence characteristics and function of ISREs, providing an important contribution to the splicing code.  相似文献   
26.
Of 14 transgenic poplar genotypes (Populus tremula × Populus alba) with antisense 4-coumarate:coenzyme A ligase that were grown in the field for 2 years, five that had substantial lignin reductions also had greatly reduced xylem-specific conductivity compared with that of control trees and those transgenic events with small reductions in lignin. For the two events with the lowest xylem lignin contents (greater than 40% reduction), we used light microscopy methods and acid fuchsin dye ascent studies to clarify what caused their reduced transport efficiency. A novel protocol involving dye stabilization and cryo-fluorescence microscopy enabled us to visualize the dye at the cellular level and to identify water-conducting pathways in the xylem. Cryo-fixed branch segments were planed in the frozen state on a sliding cryo-microtome and observed with an epifluorescence microscope equipped with a cryo-stage. We could then distinguish clearly between phenolic-occluded vessels, conductive (stain-filled) vessels, and nonconductive (water- or gas-filled) vessels. Low-lignin trees contained areas of nonconductive, brown xylem with patches of collapsed cells and patches of noncollapsed cells filled with phenolics. In contrast, phenolics and nonconductive vessels were rarely observed in normal colored wood of the low-lignin events. The results of cryo-fluorescence light microscopy were supported by observations with a confocal microscope after freeze drying of cryo-planed samples. Moreover, after extraction of the phenolics, confocal microscopy revealed that many of the vessels in the nonconductive xylem were blocked with tyloses. We conclude that reduced transport efficiency of the transgenic low-lignin xylem was largely caused by blockages from tyloses and phenolic deposits within vessels rather than by xylem collapse.Secondary xylem in woody plants is a complex vascular tissue that functions in mechanical support, conduction, storage, and protection (Carlquist, 2001; Tyree and Zimmermann, 2002). The xylem must provide a sufficient and safe water supply throughout the entire pathway from roots to leaves for transpiration and photosynthesis. It is well established that enhanced water conductivity of xylem can increase total plant carbon gain (Domec and Gartner, 2003; Santiago et al., 2004; Brodribb and Holbrook, 2005a). According to the Hagen-Poiseuille equation, xylem conductivity should scale with vessel lumen diameter to the fourth power (Tyree and Zimmermann, 2002). Indeed, xylem conductivity largely depends on anatomical features, including conduit diameters and frequencies (Salleo et al., 1985; McCulloh and Sperry, 2005). However, there are hydraulic limits to maximum vessel diameters, because xylem conduits have to withstand the strong negative pressures of the transpiration stream that could cause cell collapse or embolisms within vessels that are structurally inadequate to withstand these forces (Tyree and Sperry, 1989; Lo Gullo et al., 1995; Hacke et al., 2000). To some extent, stomatal regulation of transpiration limits the negative pressures that the xylem experiences (Tardieu and Davies, 1993; Cochard et al., 2002; Meinzer, 2002; Brodribb and Holbrook, 2004; Buckley, 2005; Franks et al., 2007; Woodruff et al., 2007). Nevertheless, plants rely on an array of structural reinforcements of xylem to ensure the safety of water transport. The size of xylem elements, vessel redundancy, intervessel pit and membrane geometries, and the thickness, microstructure, and chemical composition of cell walls are among the features that regulate tradeoffs between efficiency and safety of xylem water transport (Baas and Schweingruber, 1987; Hacke et al., 2001; Domec et al., 2006; Ewers et al., 2007; Choat et al., 2008).The xylem cell wall is made up of cellulose bundles that are hydrogen bonded with hemicelluloses, which are in turn embedded within a lignin matrix (Mansfield, 2009; Salmén and Burgert, 2009). Besides providing this matrix for the cell wall itself, lignin is thought to contribute to many of the mechanical and physical characteristics of wood as well as conferring passive resistance to the spread of pathogens within a plant (Niklas, 1992; Boyce et al., 2004; Davin et al., 2008). Lignin typically represents 20% to 30% of the dry mass of wood and therefore is among the most abundant stores of carbon in the biosphere (Zobel and van Buijtenen, 1989). The complex molecular structure and biosynthetic pathway of various types of lignins have been studied extensively (Boerjan et al., 2003; Ralph et al., 2004, 2007; Higuchi, 2006; Boudet, 2007; Davin et al., 2008). The monomeric composition of lignin varies between different cell types of the same species depending on the functional specialization of the cell (Yoshinaga et al., 1992; Watanabe et al., 2004; Xu et al., 2006). The composition and amount of lignin in wild plants varies in response to climatic conditions (Donaldson, 2002) or gravitational and mechanical demands (Pruyn et al., 2000; Kern et al., 2005; Rüggeberg et al., 2008). It is clear that plants are capable of regulating the lignification pattern in differentiating cells, which provides them with flexibility for responding to environmental stresses (Donaldson, 2002; Koehler and Telewski, 2006; Ralph et al., 2007; for review, see Vanholme et al., 2008).Whereas some level of lignin is a requisite for all vascular plants, it is often an unwanted product in the pulp and paper industry because it increases the costs of paper production and associated water treatments necessary for environmental protection (Chen et al., 2001; Baucher et al., 2003; Peter et al., 2007). Reducing the lignin content of the raw biomass material may allow more efficient hydrolysis of polysaccharides in biomass and thus facilitate the production of biofuel (Chen and Dixon, 2007). With the ultimate goal of development of wood for more efficient processing, much research has been aimed at the production of genetically modified trees with altered lignin biosynthesis (Boerjan et al., 2003; Boudet et al., 2003; Li et al., 2003; Halpin, 2004; Ralph et al., 2004, 2008; Chiang, 2006; Coleman et al., 2008a, 2008b; Vanholme et al., 2008; Wagner et al., 2009). It is now technically possible to achieve more than 50% reductions of lignin content in xylem of poplar (Populus spp.; Leplé et al., 2007; Coleman et al., 2008a, 2008b), but the consequences of such reduction on plant function have received relatively little attention (Koehler and Telewski, 2006). In-depth studies on the xylem structure and functional performance of transgenic plants with low lignin are limited, despite the need to assess their long-term sustainability for large-scale production (Anterola and Lewis, 2002; Hancock et al., 2007; Coleman et al., 2008b, Voelker, 2009; Horvath et al., 2010).Genetically modified plants are suitable models for studying fundamental questions of the physiological role of lignin because of the possibility of controlling lignification without the confounding effects encountered when comparing across plant tissues or stages of development (Koehler and Telewski, 2006; Leplé et al., 2007; Coleman et al., 2008b). Research on Arabidopsis (Arabidopsis thaliana) and tobacco (Nicotiana tabacum) has shown that down-regulation of lignin biosynthesis can have diverse effects on plant metabolism and structure, including changes in the lignin amount and composition (p-hydroxyphenyl/guaiacyl/syringyl units ratio) as well as the collapse of xylem vessel elements (Lee et al., 1997; Sewalt et al., 1997; Piquemal et al., 1998; Chabannes et al., 2001; Jones et al., 2001; Franke et al., 2002; Dauwe et al., 2007). Among temperate hardwoods, poplar has been established as a model tree for genetic manipulations because of its ecological and economic importance, fast growth, ease of vegetative propagation, and its widespread use in traditional breeding programs (Bradshaw et al., 2001; Brunner et al., 2004). The question of how manipulation of lignin can affect the anatomy and physiological function of xylem in poplar has been addressed in part by several research groups (Anterola and Lewis, 2002; Boerjan et al., 2003; Leplé et al., 2007; Coleman et al., 2008b). Some studies that involved large lignin reductions reported no significant alterations in the xylem anatomy (Hu et al., 1999; Li et al., 2003). However, in many other experiments, reduced total lignin content was associated with significant growth retardation, alterations in the lignin monomer composition, irregularities in the xylem structure (Anterola and Lewis, 2002; Leplé et al., 2007; Coleman et al., 2008b), and the patchy occurrence of collapsed xylem cells (Coleman et al., 2008b; Voelker, 2009). Furthermore, severely down-regulated lignin biosynthesis has resulted in greatly reduced xylem water-transport efficiency (Coleman et al., 2008b; Lachenbruch et al., 2009; Voelker, 2009). It is generally assumed that the reduced water transport ability of xylem with very low lignin contents is caused by collapsed conduits and/or increased embolism due to the entry of air bubbles into the water-conducting cells (Coleman et al., 2008b; Wagner et al., 2009), but detailed anatomical investigations of the causes of impaired xylem conductivity of low-lignin trees are lacking. Analysis of the anatomical basis for the properties of xylem conduits in plants with genetically manipulated amounts and composition of lignin can provide a deeper understanding of the physiological role of lignin as well as the lower limit of down-regulation of lignin biosynthesis at which trees can still survive within natural environments.One of the approaches for the suppression of lignin biosynthesis is down-regulation of 4-coumarate:coenzyme A ligase (4CL), an enzyme that functions in phenylpropanoid metabolism by producing the monolignol precursor p-coumaroyl-CoA (Kajita et al.,1997; Allina et al., 1998; Hu et al., 1998; Harding et al., 2002; Jia et al., 2004; Costa et al., 2005; Friedmann et al., 2007; Wagner et al., 2009). In a 2-year-long field trial on the physiological performance of poplar (Populus tremula × Populus alba) transgenic clones, out of 14 genotypes with altered lignin biosynthesis (down-regulated 4CL), five showed dramatically reduced wood-specific conductivity (ks) compared with that of control trees (Voelker, 2009). Those mutants with the severely reduced ks were also characterized by having the lowest wood lignin contents (up to an approximately 40% reduction) in the study. Trees with transgenic events characterized by the formation of abnormally brown wood exhibited regular branch dieback at the end of the growing season, despite having been regularly watered (Voelker, 2009). Our objective was to identify the structural features responsible for reduced transport efficiency in the xylem of transgenic poplars with extremely low lignin contents. We employed fluorescence and laser scanning confocal microscopy for anatomical analyses of xylem structure as well as dye-flow experiments followed by cryo-fluorescence microscopy to visualize the functioning water-conductive pathways in xylem at the cellular level. We report the frequent occurrence of tyloses and phenolic depositions in xylem vessels of strongly down-regulated trees that may be the cause of their reduced xylem conductivity.  相似文献   
27.
Aim Magpie‐robins and shamas are forest and woodland birds of south Asia. There are two genera: Trichixos for the monotypic T. pyrrhopygus, and Copsychus for other species. Two species are widespread, whereas the others are restricted to specific islands. Endemicity is highest in the Philippines. Using phylogenetic methods, we examined how this group came to its unusual distribution. Location Mainland Asia from India to southern China, and islands from Madagascar to the Philippines. Particular emphasis is placed on the Greater Sundas and Philippines. Methods The phylogeny was estimated from DNA sequences of 14 ingroup taxa representing all nine currently recognized Copsychus and Trichixos species. The entire mitochondrial ND2 gene and portions of nuclear myoglobin intron 2 (Myo2) and transforming growth factor beta 2 intron 5 (TGFβ2‐5) were sequenced for all but two species. The phylogeny was reconstructed using maximum likelihood and Bayesian methods. The timing of divergence events was estimated using a relaxed molecular clock approach, and ancestral areas were examined using stochastic modelling. Results The group comprises three main clades corresponding to ecological types: Trichixos, a primary‐forest specialist; Copsychus magpie‐robins, open‐woodland and coastal species; and Copsychus shamas, thick‐forest species. Trichixos appears to be sister to the magpie‐robins, rendering Copsychus polyphyletic. The dating of phylogenetic nodes was too ambiguous to provide substantial insight into specific geographical events responsible for divergence within the group. Some patterns are nevertheless clear. Copsychus shamas reached the Philippines, probably in two separate invasions, and split into endemic species. Copsychus malabaricus and C. saularis expanded widely in the Greater Sundas and mainland Southeast Asia without species‐level diversification. Main conclusions Magpie‐robins are excellent dispersers and have diversified into distinct species only on isolated oceanic islands. Trichixos, a poor disperser, is restricted to mature forests of the Malay Peninsula, Sumatra and Borneo. Copsychus shamas are intermediate in habitat preference and dispersal capabilities. Their endemism in the Philippines may be attributed to early colonization and specialization to interior forests. In the Greater Sundas, C. malabaricus and C. saularis populations split and came together on Borneo to form two separate subspecies (of each species), which now hybridize.  相似文献   
28.
Surfactant protein A (SP-A) regulates a variety of immune cell functions. We determined the ability of SP-A derived from normal and asthmatic subjects to modulate the inflammatory response elicited by Mycoplasma pneumoniae, a pathogen known to exacerbate asthma. Fourteen asthmatic and 10 normal control subjects underwent bronchoscopy with airway brushing and bronchoalveolar lavage (BAL). Total SP-A was extracted from BAL. The ratio of SP-A1 to total SP-A (SP-A1/SP-A) and the binding of total SP-A to M. pneumoniae membranes were determined. Airway epithelial cells from subjects were exposed to either normal or asthmatic SP-A before exposure to M. pneumoniae. IL-8 protein and MUC5AC mRNA were measured. Total BAL SP-A concentration did not differ between groups, but the percentage SP-A1 was significantly increased in BAL of asthmatic compared with normal subjects. SP-A1/SP-A significantly correlated with maximum binding of total SP-A to M. pneumoniae, but only in asthma. SP-A derived from asthmatic subjects did not significantly attenuate IL-8 and MUC5AC in the setting of M. pneumoniae infection compared with SP-A derived from normal subjects. We conclude that SP-A derived from asthmatic subjects does not abrogate inflammation effectively, and this dysfunction may be modulated by SP-A1/SP-A.  相似文献   
29.
A molecular phylogenetic analysis of the "true thrushes" (Aves: Turdinae)   总被引:2,自引:0,他引:2  
The true thrushes (Passeriformes: Muscicapidae, subfamily Turdinae) are a speciose and widespread avian lineage presumed to be of Old World origin. Phylogenetic relationships within this assemblage were investigated using mitochondrial DNA (mtDNA) sequence data that included the cytochrome b and ND2 genes. Our ingroup sampling included 54 species representing 17 of 20 putative turdine genera. Phylogenetic trees derived via maximum parsimony and maximum likelihood were largely congruent. Most of the Turdine taxa sampled can be placed into one of six well supported clades. Our data indicate a polyphyletic Zoothera which can be divided into at least two (Afro-Asian and Austral-Asian) main clades. The genus Turdus, as presently recognized, is paraphyletic but forms a well supported clade with the addition of three mostly monotypic genera (Platycichla, Nesocichla, and Cichlherminia). We identify an exclusively New World clade that includes a monophyletic Catharus, Hylocichla, Cichlopsis, Entomodestes, Ridgwayia, and Ixoreus. Members of the morphologically and behaviorally distinct genera Sialia, Myadestes, and Neocossyphus unexpectedly form a basal clade. Using multiple outgroup choices, we show that this group is distantly related, but unequivocally the sister group to the remaining Turdines sampled. The Turdinae appear to be a relatively old songbird lineage, originating in the mid to late Miocene. If the Turdinae are indeed Old World in origin, our data indicate a minimum of three separate invasions of the New World.  相似文献   
30.
Rab38 is a new member of the Rab small G protein family that regulates intracellular vesicle trafficking. Rab38 is expressed in melanocytes and it has been clarified that a point mutation in the postulated GTP-binding domain of Rab38 is the gene responsible for oculocutaneous albinism in chocolate mice. However, basic information regarding recombinant protein production, intracellular location, and tissue-specific expression pattern has not yet been reported. We produced recombinant Rab38 using a baculovirus/insect cell-protein expression system. A combination of Triton X-114 phase separation and nickel-affinity chromatography yielded exclusively prenylated Rab38 that bound [alpha-32P]-GTP. The mRNA and the native protein were expressed in a tissue-specific manner, e.g., in the lung, skin, stomach, liver, and kidney. Freshly isolated rat alveolar type II cells were highly positive for the mRNA signal, but the signal was rapidly lost over time. Immunofluorescence staining demonstrated that expressed GST-tagged Rab38 was mainly co-localized with endoplasmic reticulum-resident protein and also partly with intermittent vesicles between the endoplasmic reticulum and the Golgi complex. These results indicate that Rab38 is expressed non-ubiquitously in specific tissues and regulates early vesicle transport relating to the endoplasmic reticulum, and hence suggest that Rab38 abnormality may cause multiple organ diseases as well as oculocutaneous albinism.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号