首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   629篇
  免费   38篇
  2022年   11篇
  2021年   7篇
  2020年   5篇
  2019年   11篇
  2018年   14篇
  2017年   8篇
  2016年   19篇
  2015年   15篇
  2014年   26篇
  2013年   24篇
  2012年   44篇
  2011年   44篇
  2010年   27篇
  2009年   20篇
  2008年   18篇
  2007年   17篇
  2006年   20篇
  2005年   18篇
  2004年   20篇
  2003年   26篇
  2002年   8篇
  2001年   15篇
  2000年   11篇
  1999年   12篇
  1998年   5篇
  1997年   7篇
  1995年   7篇
  1992年   13篇
  1991年   9篇
  1990年   11篇
  1989年   11篇
  1988年   10篇
  1987年   11篇
  1986年   5篇
  1985年   4篇
  1984年   6篇
  1983年   4篇
  1979年   8篇
  1977年   5篇
  1976年   6篇
  1975年   6篇
  1973年   8篇
  1972年   6篇
  1971年   12篇
  1970年   9篇
  1969年   8篇
  1968年   10篇
  1967年   6篇
  1966年   11篇
  1965年   5篇
排序方式: 共有667条查询结果,搜索用时 31 毫秒
81.
Glycerokinase from Cellulomonas sp. was used to develop biosensor based on flow calorimetry for quantitative analysis of glycerol during bioconversion process. An automatic flow injection analysis device with the glycerol biosensor was built and tested during growth on glycerol of 1,3-propanediol-producing bacteria. The biosensor exhibited an extreme storage and operational stability enabling us to use it for more than 2 years without significant loss of sensitivity. No interference with 1,3-propanediol and fermentation medium was observed. The linear range of glycerol concentration up to 70 mM was extended by developed automatic dilution technique with the aim of automatic online monitoring of microbial process. The analytical system was able to monitor the bioconversion process in a fully automatic way during the whole run with sampling frequency of one sample per 10 min.  相似文献   
82.
Bacteria belonging to the genus Acetobacter and Gluconobacter, and enzymes isolated from them, have been extensively used for biosensor construction in the last decade. Bacteria used as a biocatalyst are easy to prepare and use in amperometric biosensors. They contain multiple enzyme activities otherwise not available commercially. The range of compounds analyzable by Gluconobacter biosensors includes: mono- and poly-alcohols, multiple aldoses and ketoses, several disaccharides, triacylglycerols, and complex parameters like utilizable saccharides or biological O2 demand. Here, the recent trends in Gluconobacter biosensors and current practical applications are summarized. An erratum to this article can be found at  相似文献   
83.
The increasing accessibility of mass isotopomer data via GC-MS and NMR technology has necessitated the use of a systematic and reliable method to take advantage of such data for flux analysis. Here we applied a nonlinear, optimization-based method to study substrate metabolism in cardiomyocytes using (13)C data from perfused mouse hearts. The myocardial metabolic network used in this study accounts for 257 reactions and 240 metabolites, which are further compartmentalized into extracellular space, cytosol, and mitochondrial matrix. Analysis of the perfused mouse heart showed that the steady-state ATP production rate was 16.6 +/- 2.3 micromol/min . gww, with 30% of the ATP coming from glycolysis. Of the four substrates available in the perfusate (glucose, pyruvate, lactate, and oleate), exogenous glucose forms the majority of cytosolic pyruvate. Pyruvate decaboxylation is significantly higher than carboxylation, suggesting that anaplerosis is low in the perfused heart. Exchange fluxes were predicted to be high for reversible enzymes in the citric acid cycle (CAC), but low in the glycolytic pathway. Pseudoketogenesis amounted to approximately 50% of the net ketone body uptake. Sensitivity analysis showed that the estimated flux distributions were relatively insensitive to experimental errors. The application of isotopomer data drastically improved the estimation of reaction fluxes compared to results computed with respect to reaction stoichiometry alone. Further study of 12 commonly used (13)C glucose mixtures showed that the mixtures of 20% [U-(13)C(6)] glucose, 80% [3 (13)C] glucose and 20% [U-(13)C(6)] glucose, 80% [4 (13)C] were best for resolving fluxes in the current network.  相似文献   
84.
Avian influenza A (H5N1) viruses cause severe disease in humans, but the basis for their virulence remains unclear. In vitro and animal studies indicate that high and disseminated viral replication is important for disease pathogenesis. Laboratory experiments suggest that virus-induced cytokine dysregulation may contribute to disease severity. To assess the relevance of these findings for human disease, we performed virological and immunological studies in 18 individuals with H5N1 and 8 individuals infected with human influenza virus subtypes. Influenza H5N1 infection in humans is characterized by high pharyngeal virus loads and frequent detection of viral RNA in rectum and blood. Viral RNA in blood was present only in fatal H5N1 cases and was associated with higher pharyngeal viral loads. We observed low peripheral blood T-lymphocyte counts and high chemokine and cytokine levels in H5N1-infected individuals, particularly in those who died, and these correlated with pharyngeal viral loads. Genetic characterization of H5N1 viruses revealed mutations in the viral polymerase complex associated with mammalian adaptation and virulence. Our observations indicate that high viral load, and the resulting intense inflammatory responses, are central to influenza H5N1 pathogenesis. The focus of clinical management should be on preventing this intense cytokine response, by early diagnosis and effective antiviral treatment.  相似文献   
85.
Venomotion, spontaneous cyclic contractions of venules, was first observed in the bat wing 160 years ago. Of all the functional roles proposed since then, propulsion of blood by venomotion remains the most controversial. Common animal models that require anesthesia and surgery have failed to provide evidence for venular pumping of blood. To determine whether venomotion actively pumps blood in a minimally invasive, unanesthetized animal model, we reintroduced the batwing model. We evaluated the temporal and functional relationship between the venous contraction cycle and blood flow and luminal pressure. Furthermore, we determined the effect of inhibiting venomotion on blood flow. We found that the active venous contractions produced an increase in the blood flow and exhibited temporal vessel diameter-blood velocity and pressure relationships characteristic of a peristaltic pump. The presence of valves, a characteristic of reciprocating pumps, enhances the efficiency of the venular peristaltic pump by preventing retrograde flow. Instead of increasing blood flow by decreasing passive resistance, venular dilation with locally applied sodium nitroprusside decreased blood flow. Taken together, these observations provide evidence for active venular pumping of blood. Although strong venomotion may be unique to bats, venomotion has also been inferred from venous pressure oscillations in other animal models. The conventional paradigm of microvascular pressure and flow regulation assumes venules only act as passive resistors, a proposition that must be reevaluated in the presence of significant venomotion.  相似文献   
86.
87.
Background/AimTo evaluate whether non-closure of the visceral peritoneum after total abdominal hysterectomy (TAH) and bilateral salpingo-oophorectomy (BSO) in patients with uterine corpus carcinoma influences the volume of the small intestine within the irradiated volume during adjuvant radiotherapy or late radiation intestinal toxicity.Materials and methodsA total of 152 patients after TAH + BSO with adjuvant pelvic radiotherapy were studied. The state of peritonealization was retrospectively evaluated based on surgical protocols. The volume of irradiated bowels was calculated by CT-based delineation in a radiotherapy planning system. The influence of visceral peritonealization upon the volume of the small intestine within the irradiated volume and consequent late morbidity was analyzed.ResultsVisceral peritonealization was not performed in 70 (46%) of 152 studied patients. The state of peritonealization did not affect the volume of the irradiated small intestine (p = 0.14). Mean volume of bowels irradiated in patients with peritonealization was 488 cm3 (range 200–840 cm3, median 469 cm3); mean volume of bowels irradiated in patients without peritonealization was 456 cm3 (range 254–869 cm3, median 428 cm3). We did not prove any significant difference between both arms. Nor did we observe any influence of non-peritonealization upon late intestinal morbidity (p = 0.34).ConclusionNon-closure of the visceral peritoneum after hysterectomy for uterine corpus carcinoma does not increase the volume of the small intestine within the irradiated volume, with no consequent intestinal morbidity enhancement.  相似文献   
88.

Background

Recent in-vitro studies have suggested that mast cells are involved in Dengue virus infection. To clarify the role of mast cells in the development of clinical Dengue fever, we compared the plasma levels of several mast cell-derived mediators (vascular endothelial cell growth factor [VEGF], soluble VEGF receptors [sVEGFRs], tryptase, and chymase) and -related cytokines (IL-4, -9, and -17) between patients with differing severity of Dengue fever and healthy controls.

Methodology/Principal Findings

The study was performed at Children''s Hospital No. 2, Ho Chi Minh City, and Vinh Long Province Hospital, Vietnam from 2002 to 2005. Study patients included 103 with Dengue fever (DF), Dengue hemorrhagic fever (DHF), and Dengue shock syndrome (DSS), as diagnosed by the World Health Organization criteria. There were 189 healthy subjects, and 19 febrile illness patients of the same Kinh ethnicity. The levels of mast cell-derived mediators and -related cytokines in plasma were measured by ELISA. VEGF and sVEGFR-1 levels were significantly increased in DHF and DSS compared with those of DF and controls, whereas sVEGFR-2 levels were significantly decreased in DHF and DSS. Significant increases in tryptase and chymase levels, which were accompanied by high IL-9 and -17 concentrations, were detected in DHF and DSS patients. By day 4 of admission, VEGF, sVEGFRs, and proteases levels had returned to similar levels as DF and controls. In-vitro VEGF production by mast cells was examined in KU812 and HMC-1 cells, and was found to be highest when the cells were inoculated with Dengue virus and human Dengue virus-immune serum in the presence of IL-9.

Conclusions

As mast cells are an important source of VEGF, tryptase, and chymase, our findings suggest that mast cell activation and mast cell-derived mediators participate in the development of DHF. The two proteases, particularly chymase, might serve as good predictive markers of Dengue disease severity.  相似文献   
89.
90.
Cyanide-insensitive mitochondria from Saccharomycopsis lipolytica possess an exogenous NADH dehydrogenase, located outside the inner mitochondrial membrane, and linked to coupling site II. These mitochondria are able to oxidize exogenous NADH via two pathways: (1) a cyanide- and antimycin-sensitive pathway, or cytochrome pathway, and (2) a cyanide- and antimycin-insensitive pathway, or alternative pathway. Although the oxidation of exogenous NADH through the cytochrome pathway occurs with an ATP/0 ratio tending to 2, it proceeds, per molecule of NADH oxidized, with the apparent ejection in the outer medium of only 3 protons instead of 4 protons, as is the case with glycerol 3-phosphate as control substrate, but leaves 1 hydroxyl ion in the outer medium after decay of the protonmotive force. These properties were used to demonstrate the non electrogenic function of the alternative pathway. Indeed, the oxidation of exogenous NADH via the alternative pathway proceeds without apparent ejection of protons, although this oxidation generates an electron flux in the alternative pathway as demonstrated by the net appearance in the outer medium of 1 hydroxyl ion per atom of oxygen reduced, appearance which proves sensitive to benhydroxamic acid, a specific inhibitor of the alternative pathway. The non electrogenicity of the alternative pathway is accompanied by the absence of ATP synthesis as expected from Mitchell's chemiosmotic model. The absence of energy conservation when the electron transfer proceeds via the alternative pathway is not the result of an uncoupling property of an active alternative pathway, as the oxidation of malate plus pyruvate via coupling site I and the alternative pathway occurs with an ATP/0 ratio tending to 1.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号