首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   44篇
  免费   3篇
  2022年   1篇
  2020年   2篇
  2019年   1篇
  2018年   1篇
  2015年   1篇
  2014年   1篇
  2013年   3篇
  2012年   7篇
  2011年   2篇
  2009年   2篇
  2008年   2篇
  2007年   3篇
  2006年   1篇
  2005年   2篇
  2004年   6篇
  2003年   3篇
  2002年   4篇
  1999年   1篇
  1997年   2篇
  1995年   2篇
排序方式: 共有47条查询结果,搜索用时 15 毫秒
21.
Lipid homeostasis is essential for proper function of cells and organisms. To unravel new regulators of this system, we developed a screening procedure, combining RNA interference in HeLa cells and TLC, which enabled us to monitor modifications of lipid composition resulting from short, interfering RNA knock-downs. We applied this technique to the analysis of 600 human kinases. Despite the occurrence of off-target effects, we identified JNK2 as a new player in triglyceride (TG) homeostasis and lipid droplet metabolism and, more specifically, in the regulation of lipolysis. Similar control of the level of TGs and lipid droplets was observed for its Schizosaccharomyces pombe homolog, Sty1, suggesting an evolutionary conserved function of mitogen-activated protein kinases in the regulation of lipid storage in eukaryotic cells.  相似文献   
22.
An introduction to the premise that RNA and genetically coded proteins should not be viewed as etiologically discrete entities in the origin of life is presented. This premise follows from the mutual interdependence of RNA and coded proteins in biology and the lack of prebiotically plausible constitutional self-assembly processes leading to either polymeric species. The RNA:coded peptides subsystem and its informational core, the genetic code, are then analysed retrosynthetically to suggest a (replicative) synthesis involving the intermediacy of aminoacyl-RNA trimers (cf. Scheme 5). A number of potential candidate aminoacyl-RNA trimers are identified (23-26; Scheme 6) and a chemical strategy to assess their validity is outlined. Experimental investigation of potential aminoacylation chemistry, nucleobase assembly and phosphate activation rules out three of the trimers but suggests that 26 is worthy of further investigation.  相似文献   
23.

Background

A pilot programme to treat multidrug-resistant TB (MDR-TB) was implemented in Karakalpakstan, Uzbekistan in 2003. This region has particularly high levels of MDR-TB, with 13% and 40% among new and previously treated cases, respectively.

Methodology

This study describes the treatment process and outcomes for the first cohort of patients enrolled in the programme, between October 2003 and January 2005. Confirmed MDR-TB cases were treated with an individualised, second-line drug regimen based on drug susceptibility test results, while suspected MDR-TB cases were treated with a standardised regimen pending susceptibility results.

Principal Findings

Of 108 MDR-TB patients, 87 were started on treatment during the study period. Of these, 33 (38%) were infected with strains resistant to at least one second-line drug at baseline, but none had initial ofloxacin resistance. Treatment was successful for 54 (62%) patients, with 13 (15%) dying during treatment, 12 (14%) defaulting and 8 (8%) failing treatment. Poor clinical condition and baseline second-line resistance contributed to treatment failure or death. Treatment regimens were changed in 71 (82%) patients due to severe adverse events or drug resistance. Adverse events were most commonly attributed to cycloserine, ethionamide and p-aminosalicylic acid. Extensively drug resistant TB (XDR-TB) was found among 4 of the 6 patients who failed treatment and were still alive in November 2006.

Conclusions

While acceptable treatment success was achieved, the complexity of treatment and the development of XDR-TB among treatment failures are important issues to be addressed when considering scaling up MDR-TB treatment.  相似文献   
24.
Cystic fibrosis transmembrane conductance regulator (CFTR) is a member of the ABC protein superfamily. Phosphorylation of a regulatory domain of this protein is a prerequisite for activity. We analyzed the effect of protein kinase A (PKA) phosphorylation on the structure of purified and reconstituted CFTR protein. 1H/2H exchange monitored by attenuated total reflection Fourier transform IR spectroscopy demonstrates that CFTR is highly accessible to aqueous medium. Phosphorylation of the regulatory (R) domain by PKA further increases this accessibility. More specifically, fluorescence quenching of cytosolic tryptophan residues revealed that the accessibility of the cytoplasmic part of the protein is modified by phosphorylation. Moreover, the combination of polarized IR spectroscopy with 1H/2H exchange suggested an increase of the accessibility of the transmembrane domains of CFTR. This suggests that CFTR phosphorylation can induce a large conformational change that could correspond either to a displacement of the R domain or to long range conformational changes transmitted from the phosphorylation sites to the nucleotide binding domains and the transmembrane segments. Such structural changes may provide better access for the solutes to the nucleotide binding domains and the ion binding site.  相似文献   
25.
Asthma is a heterogeneous disorder hallmarked by chronic inflammation in the respiratory system. Exacerbations of asthma are correlated with respiratory infections. Considering the implication of interferon regulatory factor 5 (IRF5) in innate and adaptive immunity, we investigated the preferential transmission patterns of ten IRF5 gene polymorphisms in two asthmatic family cohorts. A common IRF5 haplotype was found to be associated with asthma and the severity of asthmatic symptoms. Stratified analysis of subgroups of asthmatic individuals revealed that the associations were more pronounced in nonatopic asthmatic individuals. In addition, the risk alleles of IRF5 polymorphisms for asthma were almost completely opposite to those for autoimmune disorders. Our study provides the first evidence of association between IRF5 and asthma, and sheds light on the related but potentially distinct roles of IRF5 alleles in the pathogenesis of asthma and autoimmune disorders.  相似文献   
26.
27.
DNA ligases are important enzymes required for cellular processes such as DNA replication, recombination, and repair. NAD(+)-dependent DNA ligases are essentially restricted to eubacteria, thus constituting an attractive target in the development of novel antibiotics. Although such a project might involve the systematic testing of a vast number of chemical compounds, it can essentially gain from the preliminary deciphering of the conformational stability and structural perturbations associated with the formation of the catalytically active adenylated enzyme. We have, therefore, investigated the adenylation-induced conformational changes in the mesophilic Escherichia coli and thermophilic Thermus scotoductus NAD(+)-DNA ligases, and the resistance of these enzymes to thermal and chemical (guanidine hydrochloride) denaturation. Our results clearly demonstrate that anchoring of the cofactor induces a conformational rearrangement within the active site of both mesophilic and thermophilic enzymes accompanied by their partial compaction. Furthermore, the adenylation of enzymes increases their resistance to thermal and chemical denaturation, establishing a thermodynamic link between cofactor binding and conformational stability enhancement. Finally, guanidine hydrochloride-induced unfolding of NAD(+)-dependent DNA ligases is shown to be a complex process that involves accumulation of at least two equilibrium intermediates, the molten globule and its precursor.  相似文献   
28.
Psychrophiles, host of permanently cold habitats, display metabolic fluxes comparable to those exhibited by mesophilic organisms at moderate temperatures. These organisms have evolved by producing, among other peculiarities, cold-active enzymes that have the properties to cope with the reduction of chemical reaction rates induced by low temperatures. The emerging picture suggests that these enzymes display a high catalytic efficiency at low temperatures through an improved flexibility of the structural components involved in the catalytic cycle, whereas other protein regions, if not implicated in catalysis, may be even more rigid than their mesophilic counterparts. In return, the increased flexibility leads to a decreased stability of psychrophilic enzymes. In order to gain further advances in the analysis of the activity/flexibility/stability concept, psychrophilic, mesophilic, and thermophilic DNA ligases have been compared by three-dimensional-modeling studies, as well as regards their activity, surface hydrophobicity, structural permeability, conformational stabilities, and irreversible thermal unfolding. These data show that the cold-adapted DNA ligase is characterized by an increased activity at low and moderate temperatures, an overall destabilization of the molecular edifice, especially at the active site, and a high conformational flexibility. The opposite trend is observed in the mesophilic and thermophilic counterparts, the latter being characterized by a reduced low temperature activity, high stability and reduced flexibility. These results strongly suggest a complex relationship between activity, flexibility and stability. In addition, they also indicate that in cold-adapted enzymes, the driving force for denaturation is a large entropy change.  相似文献   
29.
The potentially prebiotic synthesis of ribo-nucleotides by stepwise pyrimidine nucleobase assembly on arabinose-3-phosphate derivatives has been demonstrated in previous work. Consideration of the provenance of pentose phosphates, by aldolisation or sugar phosphorylation, suggested that 2-phosphate derivatives might be generated more easily than 3-phosphate derivatives. In the 2-phosphate series, nucleobase-assembly chemistry to give ribo-nucleotides/nucleic acid can be envisaged from xylo-configured starting materials. In this paper, the derivation of xylose-2-phosphate derivatives by aldol chemistry and attempts to demonstrate subsequent pyrimidine nucleobase assembly are reported.  相似文献   
30.
Attaching and effacing Escherichia coli (AEEC) has been described as a cause of diarrhea in calves. The molecular pathogenesis of AEEC was mainly studied in human enteropathogenic E. coli strain E2348/69 in which the virulence correlated with the presence of a 35.4 kb pathogenesis island called LEE. We showed that several strains isolated from calves with diarrhea were able to produce attaching and effacing lesions in a rabbit ileal loop model and that they possess a pathogenesis island related to the LEE. Moreover, we showed that the LEE from bovine strains was inserted mainly at a different position in the chromosome compared to the human enteropathogenic E. coli strain E2348/69.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号