首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   603篇
  免费   49篇
  2023年   6篇
  2022年   6篇
  2021年   17篇
  2020年   8篇
  2019年   14篇
  2018年   12篇
  2017年   6篇
  2016年   13篇
  2015年   35篇
  2014年   26篇
  2013年   30篇
  2012年   34篇
  2011年   40篇
  2010年   31篇
  2009年   19篇
  2008年   17篇
  2007年   30篇
  2006年   20篇
  2005年   26篇
  2004年   15篇
  2003年   10篇
  2002年   14篇
  2001年   12篇
  2000年   9篇
  1999年   10篇
  1994年   4篇
  1993年   4篇
  1992年   6篇
  1991年   4篇
  1990年   4篇
  1989年   6篇
  1988年   8篇
  1987年   4篇
  1986年   12篇
  1985年   13篇
  1984年   11篇
  1983年   8篇
  1982年   4篇
  1980年   12篇
  1979年   8篇
  1978年   13篇
  1977年   8篇
  1976年   8篇
  1975年   7篇
  1974年   7篇
  1973年   4篇
  1968年   4篇
  1967年   4篇
  1966年   3篇
  1964年   3篇
排序方式: 共有652条查询结果,搜索用时 421 毫秒
41.
42.
Organic matter degradation in marine environments is essential for the recycling of nutrients, especially under conditions of anoxia where organic matter tends to accumulate. However, little is known about the diversity of the microbial communities responsible for the mineralization of organic matter in the absence of oxygen, as well as the factors controlling their activities. Here, we determined the active heterotrophic prokaryotic community in the sulphidic water column of the Black Sea, an ideal model system, where a tight coupling between carbon, nitrogen and sulphur cycles is expected. Active microorganisms degrading both dissolved organic matter (DOM) and protein extracts were determined using quantitative DNA stable isotope probing incubation experiments. These results were compared with the metabolic potential of metagenome-assembled genomes obtained from the water column. Organic matter incubations showed that groups like Cloacimonetes and Marinimicrobia are generalists degrading DOM. Based on metagenomic profiles the degradation proceeds in a potential interaction with members of the Deltaproteobacteria and Chloroflexi Dehalococcoidia. On the other hand, microbes with small genomes like the bacterial phyla Parcubacteria, Omnitrophica and of the archaeal phylum Woesearchaeota, were the most active, especially in protein-amended incubations, revealing the potential advantage of streamlined microorganisms in highly reduced conditions.  相似文献   
43.
Methanotrophic bacteria play a key role in limiting methane emissions from lakes. It is generally assumed that methanotrophic bacteria are mostly active at the oxic-anoxic transition zone in stratified lakes, where they use oxygen to oxidize methane. Here, we describe a methanotroph of the genera Methylobacter that is performing high-rate (up to 72 μM day−1) methane oxidation in the anoxic hypolimnion of the temperate Lacamas Lake (Washington, USA), stimulated by both nitrate and sulfate addition. Oxic and anoxic incubations both showed active methane oxidation by a Methylobacter species, with anoxic rates being threefold higher. In anoxic incubations, Methylobacter cell numbers increased almost two orders of magnitude within 3 days, suggesting that this specific Methylobacter species is a facultative anaerobe with a rapid response capability. Genomic analysis revealed adaptations to oxygen-limitation as well as pathways for mixed-acid fermentation and H2 production. The denitrification pathway was incomplete, lacking the genes narG/napA and nosZ, allowing only for methane oxidation coupled to nitrite-reduction. Our data suggest that Methylobacter can be an important driver of the conversion of methane in oxygen-limited lake systems and potentially use alternative electron acceptors or fermentation to remain active under oxygen-depleted conditions.  相似文献   
44.
Larval mortality is a keystone ecological factor for many benthic octopus since it mostly occurs before their settlement in the sea bottom as benthic juveniles. The literature had revealed that records of adult animals with morphological abnormalities (teratologies) are fewer in species with complex life cycle than in those with direct development. This is a direct consequence of the morphological, physiological, and development challenges that the transition from the larval to the adult morphology represents. During a routine fishing sample, we found an immature female horned octopus with additional buccal structures in two suckers of its ventral arms, likely rendering these suckers as inefficient. Based on the literature about the natural history of octopus, we provide evidence that these abnormalities were present at the moment of hatch. We evaluated the impact of the teratologies by comparing the shape of the buccal beaks and the trophic niche of the individual with five normal conspecifics. Although the beaks showed a different shape than normal individuals, the trophic niche was similar. Surprisingly, the teratological condition of the individual likely had no severe impacts on its life, even though it likely represents a handicap for its survival during its planktonic life. We also comment on other previous records from the literature of teratological adult octopus to highlight the amazing adaptive capacity of octopus to deal with challenging morphologies.  相似文献   
45.
46.
Amyloidosis is an uncommon syndrome consisting of a number of disorders having in common an extracellular deposit of fibrillary proteins. This results in functional and structural changes in the affected organs, depending on deposit location and severity.Amyloid infiltration of the thyroid gland may occur in 50% and up to 80% of patients with primary and secondary amyloidosis respectively. Amyloid goiter (AG) is a true rarity, usually found associated to secondary amyloidosis. AG may require surgical excision, usually because of compressive symptoms.We report the case of a patient with a big AG occurring in the course of a secondary amyloidosis associated to polyarticular onset juvenile idiopathic arthritis who underwent total thyroidectomy. Current literature is reviewed, an attempt is made to provide action guidelines, and some surgical considerations on this rare condition are given.  相似文献   
47.

Background

The cell death pathway activated after photodynamic therapy (PDT) is controlled by a variety of parameters including the chemical structure of the photosensitizer, its subcellular localization, and the photodynamic damage induced. The present study aims to characterize a suitable m-THPPo liposomal formulation, to determine its subcellular localization in HeLa cells and to establish the cell death mechanisms that are activated after photodynamic treatments.

Methods

Liposomes containing m-THPPo were prepared from a mixture of DPPC and DMPG at a 9:1 molar ratio. In order to procure the best encapsulation efficiency, the m-THPPo/lipid molar ratio was considered. HeLa cells were incubated with liposomal m-THPPo and the subcellular localization of m-THPPo was studied. Several assays such as TUNEL, annexin V/propidium iodide and Hoechst-33258 staining were performed after photodynamic treatments. The apoptotic initiation was assessed by cytochrome c and caspase-2 immunofluorescence.

Results

m-THPPo encapsulated in liposomes showed a decrease of the fluorescence and singlet oxygen quantum yields, compared to those of m-THPPo dissolved in tetrahydrofuran. Liposomal m-THPPo showed colocalization with LysoTracker® and it induced photoinactivation of HeLa cells by an apoptotic mechanism. In apoptotic cells no relocalization of cytochrome c could be detected, but caspase-2 was positive immediately after photosensitizing treatments.

Conclusions

Photodynamic treatment with liposomal m-THPPo leads to a significant percentage of apoptotic morphology of HeLa cells. The activation of caspase-2, without the relocalization of cytochrome c, indicates a mitochondrial-independent apoptotic mechanism.

General significance

These results provide a better understanding of the cell death mechanism induced after liposomal m-THPPo photodynamic treatment.  相似文献   
48.
49.
50.
Parathyroid hormone‐related protein (PTHrP) stimulates osteoblastic function through its N‐ and C‐terminal domains. Since the osteogenic action of the latter domain appears to depend at least in part on its interaction with the vascular endothelial growth factor (VEGF) system, we aimed to explore the putative mechanism underlying this interaction in osteoblasts. Using native conditions for protein extraction and immunoblotting, we found that both PTHrP (107–139) and the shorter PTHrP (107–111) peptide (known as osteostatin), at 100 nM, promoted the appearance of a VEGF receptor (VEGFR) 2 protein band of apparent Mr. wt. 230 kDa, which likely represents its activation by dimer formation, in mouse osteoblastic MC3T3‐E1 cells. Moreover, osteostatin (100 nM) maximally increased VEGFR2 phosphorylation at Tyr‐1059 within 5–10 min in both MC3T3‐E1 and rat osteoblastic osteosarcoma UMR‐106 cells. This phosphorylation elicited by osteostatin appears to be VEGF‐independent, but prevented by the VEGFR2 activation inhibitor SU1498 and also by the Src kinase inhibitors SU6656 and PP1. Furthermore, osteostatin induced phosphorylation of Src, extracellular signal‐regulated kinase (ERK) and Akt with a similar time course to that observed for VEGFR2 activation in these osteoblastic cells. This osteostatin‐dependent induction of ERK and Akt activation was abrogated by SU6656. Up‐regulation of VEGF and osteoprotegerin gene expression as well as the pro‐survival effect induced by osteostatin treatment were all prevented by both SU1498 and SU6656 in these osteoblastic cells. Collectively, these findings demonstrate that the osteostatin domain of C‐terminal PTHrP phosphorylates VEGFR2 through Src activation, which represents a mechanism for modulating osteoblastic function. J. Cell. Biochem. 114: 1404–1413, 2013. © 2012 Wiley Periodicals, Inc.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号