首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1186篇
  免费   73篇
  2023年   6篇
  2022年   11篇
  2021年   31篇
  2020年   18篇
  2019年   21篇
  2018年   24篇
  2017年   35篇
  2016年   45篇
  2015年   49篇
  2014年   57篇
  2013年   84篇
  2012年   92篇
  2011年   85篇
  2010年   46篇
  2009年   45篇
  2008年   56篇
  2007年   63篇
  2006年   49篇
  2005年   61篇
  2004年   43篇
  2003年   56篇
  2002年   43篇
  2001年   10篇
  2000年   11篇
  1999年   10篇
  1998年   10篇
  1996年   5篇
  1995年   8篇
  1994年   4篇
  1993年   6篇
  1992年   7篇
  1991年   5篇
  1990年   7篇
  1988年   6篇
  1987年   4篇
  1986年   7篇
  1985年   4篇
  1984年   5篇
  1983年   4篇
  1978年   5篇
  1976年   4篇
  1926年   4篇
  1913年   8篇
  1912年   5篇
  1909年   4篇
  1908年   6篇
  1907年   4篇
  1904年   7篇
  1865年   5篇
  1860年   3篇
排序方式: 共有1259条查询结果,搜索用时 15 毫秒
101.
Serine/threonine-specific phosphoprotein phosphatases (PPPs) are ubiquitous enzymes in all eukaryotes, but their regulatory functions are largely unknown in higher plants. The Arabidopsis genome encodes 26 PPP catalytic subunits related to type 1, type 2A and so-called novel phosphatases, including four plant-specific enzymes carrying large N-terminal kelch-domains, but no apparent homologue of the PP2B family. The catalytic subunits of PPPs associate with regulatory protein partners that target them to well defined cellular locations and modulate their activity. Recent studies of phosphatase partners and their interactions have directed attention again to functional dissection of plant PPP families, and highlight their intriguing roles in the regulation of metabolism, cell cycle and development, as well as their roles in light, stress and hormonal signalling.  相似文献   
102.
103.
The main function of the photosynthetic process is to capture solar energy and to store it in the form of chemical 'fuels'. Increasingly, the photosynthetic machinery is being used for the production of biofuels such as bio-ethanol, biodiesel and bio-H2. Fuel production efficiency is directly dependent on the solar photon capture and conversion efficiency of the system. Green algae (e.g. Chlamydomonas reinhardtii ) have evolved genetic strategies to assemble large light-harvesting antenna complexes (LHC) to maximize light capture under low-light conditions, with the downside that under high solar irradiance, most of the absorbed photons are wasted as fluorescence and heat to protect against photodamage. This limits the production process efficiency of mass culture. We applied RNAi technology to down-regulate the entire LHC gene family simultaneously to reduce energy losses by fluorescence and heat. The mutant Stm3LR3 had significantly reduced levels of LHCI and LHCII mRNAs and proteins while chlorophyll and pigment synthesis was functional. The grana were markedly less tightly stacked, consistent with the role of LHCII. Stm3LR3 also exhibited reduced levels of fluorescence, a higher photosynthetic quantum yield and a reduced sensitivity to photoinhibition, resulting in an increased efficiency of cell cultivation under elevated light conditions. Collectively, these properties offer three advantages in terms of algal bioreactor efficiency under natural high-light levels: (i) reduced fluorescence and LHC-dependent heat losses and thus increased photosynthetic efficiencies under high-light conditions; (ii) improved light penetration properties; and (iii) potentially reduced risk of oxidative photodamage of PSII.  相似文献   
104.
105.
IntroductionSystemic sclerosis is an autoimmune disease characterized by inflammation and fibrosis of the skin and internal organs. We sought to assess the clinical and molecular effects associated with response to intravenous abatacept in patients with diffuse cutaneous systemic.MethodsAdult diffuse cutaneous systemic sclerosis patients were randomized in a 2:1 double-blinded fashion to receive abatacept or placebo over 24 weeks. Primary outcomes were safety and the change in modified Rodnan Skin Score (mRSS) at week 24 compared with baseline. Improvers were defined as patients with a decrease in mRSS of ≥30 % post-treatment compared to baseline. Skin biopsies were obtained for differential gene expression and pathway enrichment analyses and intrinsic gene expression subset assignment.ResultsTen subjects were randomized to abatacept (n = 7) or placebo (n = 3). Disease duration from first non-Raynaud’s symptom was significantly longer (8.8 ± 3.8 years vs. 2.4 ± 1.6 years, p = 0.004) and median mRSS was higher (30 vs. 22, p = 0.05) in the placebo compared to abatacept group. Adverse events were similar in the two groups. Five out of seven patients (71 %) randomized to abatacept and one out of three patients (33 %) randomized to placebo experienced ≥30 % improvement in skin score. Subjects receiving abatacept showed a trend toward improvement in mRSS at week 24 (−8.6 ± 7.5, p = 0.0625) while those in the placebo group did not (−2.3 ± 15, p = 0.75). After adjusting for disease duration, mRSS significantly improved in the abatacept compared with the placebo group (abatacept vs. placebo mRSS decrease estimate −9.8, 95 % confidence interval −16.7 to −3.0, p = 0.0114). In the abatacept group, the patients in the inflammatory intrinsic subset showed a trend toward greater improvement in skin score at 24 weeks compared with the patients in the normal-like intrinsic subset (−13.5 ± 3.1 vs. −4.5 ± 6.4, p = 0.067). Abatacept resulted in decreased CD28 co-stimulatory gene expression in improvers consistent with its mechanism of action. Improvers mapped to the inflammatory intrinsic subset and showed decreased gene expression in inflammatory pathways, while non-improver and placebos showed stable or reverse gene expression over 24 weeks.ConclusionsClinical improvement following abatacept therapy was associated with modulation of inflammatory pathways in skin.

Trial registration

ClinicalTrials.gov NCT00442611. Registered 1 March 2007.

Electronic supplementary material

The online version of this article (doi:10.1186/s13075-015-0669-3) contains supplementary material, which is available to authorized users.  相似文献   
106.
This study evaluated the role of poly(ADP-ribose) polymerase (PARP) in systemic oxidative stress and 4-hydoxynonenal adduct accumulation in diabetic peripheral neuropathy. Control and streptozotocin-diabetic rats were maintained with or without treatment with the PARP inhibitor, 1,5-isoquinolinediol, 3 mg kg(-1) day(-1), for 10 weeks after an initial 2 weeks. Treatment efficacy was evaluated by poly(ADP-ribosyl)ated protein content in peripheral nerve and spinal cord (Western blot analysis) and dorsal root ganglion neurons and nonneuronal cells (fluorescence immunohistochemistry), as well as by indices of peripheral nerve function. Diabetic rats displayed increased urinary isoprostane and 8-hydroxy-2'-deoxyguanosine excretion (ELISA) and 4-hydroxynonenal adduct accumulation in endothelial and Schwann cells of the peripheral nerve, neurons, astrocytes, and oligodendrocytes of the spinal cord and neurons and glial cells of the dorsal root ganglia (double-label fluorescence immunohistochemistry), as well as motor and sensory nerve conduction velocity deficits, thermal hypoalgesia, and tactile allodynia. PARP inhibition counteracted diabetes-induced systemic oxidative stress and 4-hydroxynonenal adduct accumulation in peripheral nerve and spinal cord (Western blot analysis) and dorsal root ganglion neurons (perikarya, fluorescence immunohistochemistry), which correlated with improvement of large and small nerve fiber function. The findings reveal the important role of PARP activation in systemic oxidative stress and 4-hydroxynonenal adduct accumulation in diabetic peripheral neuropathy.  相似文献   
107.
A new graph–theoretical approach called thermodynamic sampling of amino acid residues (TSAR) has been elaborated to explicitly account for the protein side chain flexibility in modeling conformation‐dependent protein properties. In TSAR, a protein is viewed as a graph whose nodes correspond to structurally independent groups and whose edges connect the interacting groups. Each node has its set of states describing conformation and ionization of the group, and each edge is assigned an array of pairwise interaction potentials between the adjacent groups. By treating the obtained graph as a belief‐network—a well‐established mathematical abstraction—the partition function of each node is found. In the current work we used TSAR to calculate partition functions of the ionized forms of protein residues. A simplified version of a semi‐empirical molecular mechanical scoring function, borrowed from our Lead Finder docking software, was used for energy calculations. The accuracy of the resulting model was validated on a set of 486 experimentally determined pKa values of protein residues. The average correlation coefficient (R) between calculated and experimental pKa values was 0.80, ranging from 0.95 (for Tyr) to 0.61 (for Lys). It appeared that the hydrogen bond interactions and the exhaustiveness of side chain sampling made the most significant contribution to the accuracy of pKa calculations. Proteins 2011; © 2011 Wiley‐Liss, Inc.  相似文献   
108.
HIV-1 replicative capacity (RC) provides a measure of within-host fitness and is determined in the context of phenotypic drug resistance testing. However it is unclear how these in-vitro measurements relate to in-vivo processes. Here we assess RCs in a clinical setting by combining a previously published machine-learning tool, which predicts RC values from partial pol sequences with genotypic and clinical data from the Swiss HIV Cohort Study. The machine-learning tool is based on a training set consisting of 65000 RC measurements paired with their corresponding partial pol sequences. We find that predicted RC values (pRCs) correlate significantly with the virus load measured in 2073 infected but drug na?ve individuals. Furthermore, we find that, for 53 pairs of sequences, each pair sampled in the same infected individual, the pRC was significantly higher for the sequence sampled later in the infection and that the increase in pRC was also significantly correlated with the increase in plasma viral load and with the length of the time-interval between the sampling points. These findings indicate that selection within a patient favors the evolution of higher replicative capacities and that these in-vitro fitness measures are indicative of in-vivo HIV virus load.  相似文献   
109.
Brain‐derived neurotrophic factor (BDNF) is critical in synaptic plasticity and in the survival and function of midbrain dopamine neurons. In this study, we assessed the effects of a partial genetic deletion of BDNF on motor function and dopamine (DA) neurotransmitter measures by comparing Bdnf+/? with wildtype mice (WT) at different ages. Bdnf+/? and WT mice had similar body weights until 12 months of age; however, at 21 months, Bdnf+/? mice were significantly heavier than WT mice. Horizontal and vertical motor activity was reduced for Bdnf+/? compared to WT mice, but was not influenced by age. Performance on an accelerating rotarod declined with age for both genotypes and was exacerbated for Bdnf+/? mice. Body weight did not correlate with any of the three behavioral measures studied. Dopamine neurotransmitter markers indicated no genotypic difference in striatal tyrosine hydroxylase, DA transporter (DAT) or vesicular monoamine transporter 2 (VMAT2) immunoreactivity at any age. However, DA transport via DAT (starting at 12 months) and VMAT2 (starting at 3 months) as well as KCl‐stimulated DA release were reduced in Bdnf+/? mice and declined with age suggesting an increasingly important role for BDNF in the release and uptake of DA with the aging process. These findings suggest that a BDNF expression deficit becomes more critical to dopaminergic dynamics and related behavioral activities with increasing age.  相似文献   
110.
Inducible nitric oxide synthase (iNOS) is a major source of nitric oxide during inflammation whose activity is thought to be controlled primarily at the expression level. The B1 kinin receptor (B1R) post‐translationally activates iNOS beyond its basal activity via extracellular signal regulated kinase (ERK)‐mediated phosphorylation of Ser745. Here we identified the signalling pathway causing iNOS activation in cytokine‐treated endothelial cells or HEK293 cells transfected with iNOS and B1R. To allow kinetic measurements of nitric oxide release, we used a sensitive porphyrinic microsensor (response time = 10 msec.; 1 nM detection limit). B1Rs signalled through Gαi coupling as ERK and iNOS activation were inhibited by pertussis toxin. Furthermore, transfection of constitutively active mutant Gαi Q204L but not Gαq Q209L resulted in high basal iNOS‐derived nitric oxide. G‐βγ subunits were also necessary as transfection with the β‐adrenergic receptor kinase C‐terminus inhibited the response. B1R‐dependent iNOS activation was also inhibited by Src family kinase inhibitor PP2 and trans‐fection with dominant negative Src. Other ERK‐MAP kinase members were involved as the response was inhibited by dominant negative H‐Ras, Raf kinase inhibitor, ERK activation inhibitor and MEK inhibitor PD98059. In contrast, PI3 kinase inhibitor LY94002, calcium chelator 1,2‐bis‐(o‐Aminophenoxy)‐ethane‐N,N,N′,N′‐tetraacetic acid, tetraacetoxymethyl ester (BAPTA‐AM), protein kinase C inhibitor calphostin C and protein kinase C activator PMA had no effect. Angiotensin converting enzyme inhibitor enalaprilat also directly activated B1Rs to generate high output nitric oxide via the same pathway. These studies reveal a new mechanism for generating receptor‐regulated high output nitric oxide in inflamed endothelium that may play an important role in the development of vascular inflammation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号