首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   630篇
  免费   40篇
  2024年   2篇
  2023年   12篇
  2022年   14篇
  2021年   31篇
  2020年   20篇
  2019年   17篇
  2018年   23篇
  2017年   28篇
  2016年   34篇
  2015年   46篇
  2014年   34篇
  2013年   56篇
  2012年   64篇
  2011年   56篇
  2010年   33篇
  2009年   22篇
  2008年   32篇
  2007年   22篇
  2006年   25篇
  2005年   23篇
  2004年   27篇
  2003年   3篇
  2002年   18篇
  2001年   5篇
  2000年   2篇
  1999年   1篇
  1998年   2篇
  1997年   2篇
  1995年   4篇
  1994年   3篇
  1992年   1篇
  1991年   1篇
  1990年   1篇
  1989年   2篇
  1986年   1篇
  1979年   1篇
  1978年   1篇
  1968年   1篇
排序方式: 共有670条查询结果,搜索用时 31 毫秒
91.
92.
Metabolic activities of different microorganisms (Bacillus subtilis, B. licheniformis and Aspergillus niger) and hydrolytic enzymes (concentrations: 1 to 200 mg enzyme solids g–1 feed) were studied individually and in combinations with respect to H2 and methane production from damaged wheat grains. Bacillus subtilis, B. licheniformis and pre-existing hydrogen producers (control) produced 45 to 64 l H2 kg–1 total solids and subsequently, with the help of added methanogens, 155 to 220 l methane kg–1 total solids could be produced. H2 production from damaged wheat grains could be decreased to 28% or enhanced up to 152% with respect to control, by employing various microbial and enzymatic treatments. Similarly, it has been made possible to vary methane production capacities from as low as 17% to as high as 110% with respect to control.  相似文献   
93.
94.
95.
96.
Tan spot, caused by Pyrenophora tritici-repentis (Ptr), is a destructive foliar disease in all types of cultivated wheat worldwide. Genetics of tan spot resistance in wheat is complex, involving insensitivity to fungal-produced necrotrophic effectors (NEs), major resistance genes, and quantitative trait loci (QTL) conferring race-nonspecific and race-specific resistance. The Nebraska hard red winter wheat (HRWW) cultivar ‘Wesley’ is insensitive to Ptr ToxA and highly resistant to multiple Ptr races, but the genetics of resistance in this cultivar is unknown. In this study, we used a recombinant inbred line (RIL) population derived from a cross between Wesley and another Nebraska cultivar ‘Harry’ (Ptr ToxA sensitive and highly susceptible) to identify QTL associated with reaction to tan spot caused by multiple races/isolates. Sensitivity to Ptr ToxA conferred by the Tsn1 gene was mapped to chromosome 5B as expected. The Tsn1 locus was a major susceptibility QTL for the race 1 and race 2 isolates, but not for the race 2 isolate with the ToxA gene deleted. A second major susceptibility QTL was identified for all the Ptr ToxC-producing isolates and located to the distal end of the chromosome 1A, which likely corresponds to the Tsc1 locus. Three additional QTL with minor effects were identified on chromosomes 7A, 7B, and 7D. This work indicates that both Ptr ToxA-Tsn1 and Ptr ToxC-Tsc1 interactions are important for tan spot development in winter wheat, and Wesley is highly resistant largely due to the absence of the two tan spot sensitivity genes.  相似文献   
97.
Diatoms are photosynthetic unicellular microalgae and are nature’s hidden source of several biosynthetic metabolites with their use in biofuel, food and drug industries. They mainly contain various lipids, sterols, isoprenoids and toxins with their use in apoptotic, fertility controlling and cancer drugs. Chemical studies on diatoms are limited due to various limitations such as variation of nutrients, contaminants and change in seasonal factors in the environment. To overcome these limitations, we obtained axenic cultures of 12 fresh-water diatom strains on the 22nd day of inoculation having a dry weight of 1 mg each and performed their Fourier transform infrared (FTIR) study for the detection of functional groups responsible for their chemical moiety. The spectral mapping showed a varied level of polyunsaturated fatty acids, amides, amines, ketone bodies and esters for their applications in various pharmacological, food and biofuel industries in the exponential phase of their growth in f/2 media. The FTIR study of the 12 diatom strains showed various similarities in the form of some common peak patterns ranging from 3000 to 3600 cm?1 for νO–H absorption. The symmetric stretching vibration frequency of Diadesmis confervaceae (V2) type species showed different behaviour than others in the spectral region starting from 1600 to 1700 cm?1. The absorption between 1500 and 1575 cm?1 reflects the presence of the –N–H group. Infrared (IR) absorptions falling between 1600 and 1700 cm?1 reflect the presence of amide’s νC=O in all species. Placoneis elginensis (V8) type species showed an additional absorption band which is centred around 1735–1750 cm?1 which perhaps reflects the presence of ester’s νC=O. Diadesmis confervaceae (V2), Nitzschia palea (V4), Placoneis elginensis (V8), Nitzschia palea var. debilis (V6), Nitzschia inconspicua (V10), Gomphonema parvulum (V11) and Sellaphora (V12) showed distinct structural features with important key functionalities that can make them essential drug markers in the pharmaceutical industry.  相似文献   
98.
Genetically modified (GM) crops undergo large scale multi-location field trials to characterize agronomics, composition, and the concentration of newly expressed protein(s) [herein referred to as transgenic protein(s)]. The concentration of transgenic proteins in different plant tissues and across the developmental stages of the plant is considered in the safety assessment of GM crops. Reference or housekeeping proteins are expected to maintain a relatively stable expression pattern in healthy plants given their role in cellular functions. Understanding the effects of genotype, growth stage and location on the concentration of endogenous housekeeping proteins may provide insight into the contribution these factors could have on transgenic protein concentrations in GM crops. The concentrations of three endogenous proteins (actin, elongation factor 1-alpha, and glyceraldehyde 3-phosphate dehydrogenase) were measured in several different maize hybrids grown across multiple field locations over 2 years. Leaf samples were collected from healthy plants at three developmental stages across the growing seasons, and protein concentrations were quantified by indirect enzyme-linked immunosorbent assay (ELISA) for each protein. In general, the concentrations of these three endogenous proteins were relatively consistent across hybrid backgrounds, when compared within one growth stage and location (2–26%CV), whereas the concentrations of proteins in the same hybrid and growth stage across different locations were more variable (12–64%CV). In general, the protein concentrations in 2013 and 2014 show similar trends in variability. Some degree of variability in protein concentrations should be expected for both transgenic and endogenous plant-expressed proteins. In the case of GM crops, the potential variation in protein concentrations due to location effects is captured in the current model of multi-location field testing.  相似文献   
99.
An encapsulation system comprising of a UV‐curable epoxy, a solution processed polymer interlayer, and a glass cover‐slip, is used to increase the stability of methylammonium lead triiodide (CH3NH3PbI3) perovskite planar inverted architecture photovoltaic (PV) devices. It is found this encapsulation system acts as an efficient barrier to extrinsic degradation processes (ingress of moisture and oxygen), and that the polymer acts as a barrier that protects the PV device from the epoxy before it is fully cured. This results in devices that maintain 80% of their initial power conversion efficiency after 1000 h of AM1.5 irradiation. Such devices are used as a benchmark and are compared with devices having initially enhanced efficiency as a result of a solvent annealing process. It is found that such solvent‐annealed devices undergo enhanced burn‐in and have a reduced long‐term efficiency, a result demonstrating that initially enhanced device efficiency does not necessarily result in long‐term stability.  相似文献   
100.
The human gut microbiome plays a crucial role in human health and efforts need to be done for cultivation and characterisation of bacteria with potential health benefits. Here, we isolated a bacterium from a healthy Indian adult faeces and investigated its potential as probiotic. The cultured bacterial strain 17OM39 was identified as Enterococcus faecium by 16S rRNA gene sequencing. The strain 17OM39 exhibited tolerance to acidic pH, showed antimicrobial activity and displayed strong cell surface traits such as hydrophobicity and autoaggregation capacity. The strain was able to tolerate bile salts and showed bile salt hydrolytic (BSH) activity, exopolysaccharide production and adherence to human HT-29 cell line. Importantly, partial haemolytic activity was detected and the strain was susceptible to the human serum. Genomics investigation of strain 17OM39 revealed the presence of diverse genes encoding for proteolytic enzymes, stress response systems and the ability to produce essential amino acids, vitamins and antimicrobial compound Bacteriocin-A. No virulence factors and plasmids were found in this genome of the strain 17OM39. Collectively, these physiological and genomic features of 17OM39 confirm the potential of this strain as a candidate probiotic.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号