首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   827篇
  免费   78篇
  2023年   3篇
  2022年   6篇
  2021年   20篇
  2020年   11篇
  2019年   21篇
  2018年   40篇
  2017年   20篇
  2016年   24篇
  2015年   41篇
  2014年   47篇
  2013年   47篇
  2012年   82篇
  2011年   73篇
  2010年   37篇
  2009年   27篇
  2008年   41篇
  2007年   41篇
  2006年   35篇
  2005年   35篇
  2004年   24篇
  2003年   32篇
  2002年   23篇
  2001年   7篇
  2000年   6篇
  1999年   12篇
  1998年   8篇
  1997年   4篇
  1996年   9篇
  1995年   5篇
  1994年   8篇
  1993年   3篇
  1992年   9篇
  1991年   7篇
  1990年   5篇
  1989年   6篇
  1988年   5篇
  1987年   6篇
  1986年   4篇
  1985年   8篇
  1984年   8篇
  1983年   4篇
  1982年   5篇
  1979年   5篇
  1977年   4篇
  1974年   3篇
  1973年   3篇
  1972年   5篇
  1970年   5篇
  1963年   2篇
  1959年   2篇
排序方式: 共有905条查询结果,搜索用时 468 毫秒
51.
52.
To assist in the analysis of plant gene functions we have generated a new Arabidopsis insertion mutant collection of 90 000 lines that carry the T-DNA of Agrobacterium gene fusion vector pPCV6NFHyg. Segregation analysis indicates that the average frequency of insertion sites is 1.29 per line, predicting about 116 100 independent tagged loci in the collection. The average T-DNA copy number estimated by Southern DNA hybridization is 2.4, as over 50% of the insertion loci contain tandem T-DNA copies. The collection is pooled in two arrays providing 40 PCR templates, each containing DNA from either 4000 or 5000 individual plants. A rapid and sensitive PCR technique using high-quality template DNA accelerates the identification of T-DNA tagged genes without DNA hybridization. The PCR screening is performed by agarose gel electrophoresis followed by isolation and direct sequencing of DNA fragments of amplified T-DNA insert junctions. To estimate the mutation recovery rate, 39 700 lines have been screened for T-DNA tags in 154 genes yielding 87 confirmed mutations in 73 target genes. Screening the whole collection with both T-DNA border primers requires 170 PCR reactions that are expected to detect a mutation in a gene with at least twofold redundancy and an estimated probability of 77%. Using this technique, an M2 family segregating a characterized gene mutation can be identified within 4 weeks.  相似文献   
53.
Bread wheat (hexaploid AABBDD genome; 16 billion basepairs) is a genetically complex, self-pollinating plant with bisexual flowers that produce short-lived pollen. Very little is known about the molecular biology of its gametophyte development despite a longstanding interest in hybrid seeds. We present here a comprehensive characterization of three apparently homeologous genes (TAA1a, TAA1b and TAA1c) and demonstrate their anther-specific biochemical function. These eight-exon genes, found at only one copy per haploid complement in this large genome, express specifically within the sporophytic tapetum cells. The presence of TAA1 mRNA and protein was evident only at specific stages of pollen development as the microspore wall thickened during the progression of free microspores into vacuolated-microspores. This temporal regulation matched the assembly of wall-impregnated sporopollenin, a phenylpropanoid-lipid polymer containing very long chain fatty alcohols (VLCFAlc), described in the literature. Our results establish that sporophytic genes contribute to the production of fatty alcohols: Transgenic expression of TAA1 afforded production of long/VLCFAlc in tobacco seeds (18 : 1; 20 : 1; 22 : 1; 24 : 0; 26 : 0) and in Escherichia coli (14 : 0; 16 : 0; 18 : 1), suggesting biochemical versatility of TAA1 with respect to cellular milieu and substrate spectrum. Pollen walls additionally contain fatty alcohols in the form of wax esters and other lipids, and some of these lipids are known to play a role in the highly specific sexual interactions at the pollen-pistil interface. This study provides a handle to study these and to manipulate pollen traits, and, furthermore, to understand the molecular biology of fatty alcohol metabolism in general.  相似文献   
54.
After a previous mass screening and enrichment programme for the isolation of thermotolerant yeasts, VS1, VS2, VS3 and VS4 strains isolated from soil samples, collected within the hot regions of Kothagudem Thermal Power Plant, AP, India, had a better thermotolerance, osmotolerance and ethanol tolerance than the other isolates. Among these isolates VS1 and VS3 were best performers. Efforts were made to further improve their osmotolerance, thermotolerance and ethanol tolerance by treating them with UV radiation. Mutants of VS1 and VS3 produced more biomass and ethanol than the parent strains at high temperature and glucose concentrations. The amount of biomass produced by VS1 and VS3 mutants was 0.25 and 0.20 g l(-1) more than the parent strains at 42 degrees C using 2% glucose. At high glucose concentrations VS1 and VS3 mutants produced biomass which was 0.70 and 0.30 g l(-1) at 30 degrees C and 0.10 and 0.20 g l(-1) at 40 degrees C more than the parent strains. The amount of ethanol produced by the mutants (VS1 and VS3) was 8.20 and 1.20 g l(-1) more than the parent strains at 42 degrees C using 150 g l(-1) glucose. More ethanol was produced by mutants (VS1 and VS3) than the parents at high glucose concentrations of 5.0 and 6.0 g l(-1) at 30 degrees C and 13.0 and 3.0 g l(-1) at 42 degrees C, respectively. These results indicated that UV mutagenesis can be used for improving thermotolerance, ethanol tolerance and osmotolerance in VS1 and VS3 yeast strains.  相似文献   
55.
Gopalan KV  Srivastava DK 《Biochemistry》2002,41(14):4638-4648
The active site residue, Glu-376, of medium-chain acyl-CoA dehydrogenase (MCAD) has been known to abstract the alpha-proton from acyl-CoA substrates during the course of the reductive half-reaction. The site-specific mutation of Glu-376-->Gln(E376Q) slows down the octanoyl-CoA-dependent reductive half-reaction of the enzyme by about 5 orders of magnitude due to impairment in the proton-transfer step. To test whether the carboxyl group of Glu-376 exclusively serves as the active site base (for abstracting the alpha-proton) during the enzyme catalysis, we undertook a detailed kinetic investigation of the enzyme-ligand interaction and enzyme catalysis, utilizing octanoyl-CoA/octenoyl-CoA as a physiological substrate/product pair and the wild-type and E376Q mutant enzymes as the catalysts. The transient kinetic data revealed that the E376Q mutation not only impaired the rate of octanoyl-CoA-dependent reduction of the enzyme-bound FAD, but also impaired the association and dissociation rates for the binding of the reaction product, octenoyl-CoA. Besides, the E376Q mutation correspondingly impaired the kinetic profiles for the quenching of the intrinsic protein fluorescence during the course of the above diverse (i.e., "chemistry" versus "physical interaction") processes. A cumulative account of the experimental data led to the suggestion that the carboxyl group of Glu-376 of MCAD is intimately involved in modulating the microscopic environment (protein conformation) of the enzyme's active site during the course of ligand binding and catalysis. Arguments are presented that the electrostatic interactions among Glu-376, FAD, and CoA-ligands are responsible for structuring the enzyme's active site cavity in the ground and transition states of the enzyme during the above physicochemical processes.  相似文献   
56.
Zheng Z  Xia Q  Dauk M  Shen W  Selvaraj G  Zou J 《The Plant cell》2003,15(8):1872-1887
Membrane-bound glycerol-3-phosphate acyltransferase (GPAT; EC 2.3.1.15) mediates the initial step of glycerolipid biosynthesis in the extraplastidic compartments of plant cells. Here, we report the molecular characterization of a novel GPAT gene family from Arabidopsis, designated AtGPAT. The corresponding polypeptides possess transmembrane domains and GPAT activity when expressed heterologously in a yeast lipid mutant. The functional significance of one isoform, AtGPAT1, is the focus of the present study. Disruption of the AtGPAT1 gene causes a massive pollen development arrest, and subsequent introduction of the gene into the mutant plant rescues the phenotype, illustrating a pivotal role for AtGPAT1 in pollen development. Microscopic examinations revealed that the gene lesion results in a perturbed degeneration of the tapetum, which is associated with altered endoplasmic reticulum profiles and reduced secretion. In addition to the sporophytic effect, AtGPAT1 also exerts a gametophytic effect on pollen performance, as the competitive ability of a pollen grain to pollinate is dependent on the presence of an AtGPAT1 gene. Deficiency in AtGPAT1 correlates with several fatty acid composition changes in flower tissues and seeds. Unexpectedly, however, a loss of AtGPAT1 causes no significant change in seed oil content.  相似文献   
57.
In a previous work (part 1), nanocomposite materials were obtained using a latex of either unvulcanized or prevulcanized natural rubber as the matrix and a colloidal suspension of crab chitin whiskers as the reinforcing phase. The mechanical behavior of the resulting nanocomposite films was analyzed in both the linear and the nonlinear range in the present study. The effects of the filler and processing technique were evaluated, and the results are discussed based on the knowledge of the structural morphology and swelling behavior reported in our previous work. The reinforcing effect of chitin whiskers strongly depended on their ability to form a rigid three-dimensional network, resulting from strong interactions such as hydrogen bonds between the whiskers. The results emanating from the successive tensile test experiments give clear evidence for the presence of a three-dimensional chitin network within the evaporated samples. Cross-linking of the matrix was found to interfere with the formation of this network.  相似文献   
58.
Nanocomposite materials were obtained from a colloidal suspension of chitin whiskers as the reinforcing phase and latex of both unvulcanized and prevulcanized natural rubber as the matrix. The chitin whiskers, prepared by acid hydrolysis of chitin from crab shell, consisted of slender parallelepiped rods with an aspect ratio close to 16. After the two aqueous suspensions were mixed and strirred, solid composite films were obtained either by freeze-drying and hot-pressing or by casting and evaporating the preparations. The processing and swelling behavior of composite films were evaluated. It was concluded that the whiskers form a rigid network assumed to be governed by a percolation mechanism in the evaporated samples only. Comparatively, better resistance of evaporated samples than hot-pressed ones against swelling in an organic solvent medium is good evidence for the existence of a rigid chitin network. The values of diffusion coefficient, bound rubber content, and relative weight loss also supported the presence of a three-dimensional chitin network within the evaporated samples. The mechanical behavior of the composites gives additional insight and evidence for this fact (part 2).  相似文献   
59.
Both rat and human kidney nuclei exhibited time and pH dependent oxalate or histone-oxalate uptake which was inhibited by anion transport inhibitor, 4,4-dithiocyanostilbene-2,2-disulphonic acid. Sodium chloride had no effect. Nuclear membrane had oxalate binding at pH 7.4. Extraction of nuclear membrane by Triton–high salt mixture showed maximal oxalate binding activity with nuclear pore complex while nuclear lamin had no oxalate binding. The rat and human kidney nuclear pore complex showed oxalate binding of 144 and 220 pmoles/mg protein respectively. Subsequent purification of the protein on diethyl amino ethyl–Sephadex A 50 column and Sephadex G-200 column yielded 4-fold purification. The protein revealed a molecular weight of 205 kDa on SDS-PAGE. The protein was found to be saturable at 2 M oxalate and had a Kd of 2.98 pM and a Bmax of 197 pmoles. Antibody for 205 kD was separated from primary biliary cirrhosis serum containing auto antibody against 205 kDa using affinity column chromatography. The oxalate binding activity as well as the nuclear uptake of oxalate or histone-oxalate were inhibited by its antibody.  相似文献   
60.
The protein subunit of Escherichia coli ribonuclease P (which has a cysteine residue at position 113) and its single cysteine-substituted mutant derivatives (S16C/C113S, K54C/C113S and K66C/C113S) have been modified using a sulfhydryl-specific iron complex of EDTA-2- aminoethyl 2-pyridyl disulfide (EPD-Fe). This reaction converts C5 protein, or its single cysteine-substituted mutant derivatives, into chemical nucleases which are capable of cleaving the cognate RNA ligand, M1 RNA, the catalytic RNA subunit of E. coli RNase P, in the presence of ascorbate and hydrogen peroxide. Cleavages in M1 RNA are expected to occur at positions proximal to the site of contact between the modified residue (in C5 protein) and the ribose units in M1 RNA. When EPD-Fe was used to modify residue Cys16 in C5 protein, hydroxyl radical-mediated cleavages occurred predominantly in the P3 helix of M1 RNA present in the reconstituted holoenzyme. C5 Cys54-EDTA-Fe produced cleavages on the 5' strand of the P4 pseudoknot of M1 RNA, while the cleavages promoted by C5 Cys66-EDTA-Fe were in the loop connecting helices P18 and P2 (J18/2) and the loop (J2/4) preceding the 3' strand of the P4 pseudoknot. However, hydroxyl radical-mediated cleavages in M1 RNA were not evident with Cys113-EDTA-Fe, perhaps indicative of Cys113 being distal from the RNA-protein interface in the RNase P holoenzyme. Our directed hydroxyl radical-mediated footprinting experiments indicate that conserved residues in the RNA and protein subunit of the RNase-P holoenzyme are adjacent to each other and provide structural information essential for understanding the assembly of RNase P.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号