首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   83篇
  免费   12篇
  2018年   1篇
  2017年   3篇
  2015年   3篇
  2014年   1篇
  2013年   4篇
  2012年   5篇
  2011年   8篇
  2010年   3篇
  2009年   3篇
  2008年   7篇
  2007年   1篇
  2006年   6篇
  2005年   4篇
  2004年   2篇
  2003年   5篇
  2002年   2篇
  2001年   4篇
  2000年   3篇
  1999年   3篇
  1998年   3篇
  1997年   2篇
  1996年   3篇
  1994年   1篇
  1992年   3篇
  1991年   1篇
  1989年   2篇
  1988年   1篇
  1987年   1篇
  1986年   2篇
  1982年   3篇
  1981年   1篇
  1977年   2篇
  1975年   1篇
  1969年   1篇
排序方式: 共有95条查询结果,搜索用时 22 毫秒
61.
The constant attack on DNA by endogenous and exogenous agents gives rise to nucleobase modifications that cause mutations, which can lead to cancer. Visualizing the effects of these lesions on the structure of duplex DNA is key to understanding their biologic consequences. The most definitive method of obtaining such structures, X-ray crystallography, is troublesome to employ owing to the difficulty of obtaining diffraction-quality crystals of DNA. Here, we present a crystallization system that uses a protein, the DNA glycosylase AlkA, as a scaffold to mediate the crystallization of lesion-containing duplex DNA. We demonstrate the use of this system to facilitate the rapid structure determination of DNA containing the lesion 8-oxoguanine in several different sequence contexts, and also deoxyinosine and 1,N(6)-ethenoadenine, each stabilized as the corresponding 2'-flouro analog. The structures of 8-oxoguanine provide a correct atomic-level view of this important endogenous lesion in DNA.  相似文献   
62.
Herpes simplex virus DNA polymerase is a heterodimer composed of UL30, a catalytic subunit, and UL42, a processivity subunit. Mutations that decrease DNA binding by UL42 decrease long chain DNA synthesis by the polymerase. The crystal structure of UL42 bound to the C terminus of UL30 revealed an extensive positively charged surface ("back face"). We tested two hypotheses, 1) the C terminus of UL30 affects DNA binding and 2) the positively charged back face mediates DNA binding. Addressing the first hypothesis, we found that the presence of a peptide corresponding to the UL30 C terminus did not result in altered binding of UL42 to DNA. Addressing the second hypothesis, previous work showed that substitution of four conserved arginine residues on the basic face with alanines resulted in decreased DNA affinity. We tested the affinities for DNA and the stimulation of long chain DNA synthesis of mutants in which the four conserved arginine residues were substituted individually or together with lysines and also a mutant in which a conserved glutamine residue was substituted with an arginine to increase positive charge on the back face. We also engineered cysteines onto this surface to permit disulfide cross-linking studies. Last, we assayed the effects of ionic strength on DNA binding by UL42 to estimate the number of ions released upon binding. Our results taken together strongly suggest that the basic back face of UL42 contacts DNA and that positive charge on this surface is important for this interaction.  相似文献   
63.
64.
Fromme JC  Verdine GL 《The EMBO journal》2003,22(13):3461-3471
Nearly all cells express proteins that confer resistance to the mutagenic effects of oxidative DNA damage. The primary defense against the toxicity of oxidative nucleobase lesions in DNA is the base-excision repair (BER) pathway. Endonuclease III (EndoIII) is a [4Fe-4S] cluster-containing DNA glycosylase with repair activity specific for oxidized pyrimidine lesions in duplex DNA. We have determined the crystal structure of a trapped intermediate that represents EndoIII frozen in the act of repairing DNA. The structure of the protein-DNA complex provides insight into the ability of EndoIII to recognize and repair a diverse array of oxidatively damaged bases. This structure also suggests a rationale for the frequent occurrence in certain human cancers of a specific mutation in the related DNA repair protein MYH.  相似文献   
65.
A particularly challenging problem in chemical biology entails developing systems for modulating the activity of RNA using small molecules. One promising new approach towards this problem exploits the phenomenon of ‘surface borrowing,’ in which the small molecule is presented to the RNA in complex with a protein, thereby expanding the overall surface area available for interaction with RNA. To extend the utility of surface borrowing to include potential applications in synthetic biology, we set out to create an ‘orthogonal’ RNA-targeting system, one in which all components are foreign to the cell. Here we report the identification of small RNA modules selected in vitro to bind a surface-engineered protein, but only when the two macromolecules are bound to a synthetic bifunctional small molecule.  相似文献   
66.
Mitomycin C (MC, 1) forms covalent adducts under acidic activating conditions (pH approximately 4) with deoxyguanosine, d(GpC), and guanine residues of calf thymus DNA. In the case of deoxyguanosine, five adducts arise from a common precursor, N7-(2' beta, 7'-diaminomitosen-1'-yl)-2'-deoxyguanosine (10a; not isolated), which hydrolyzes spontaneously via two pathways: scission of the glycosidic bond to form N7-(2' beta, 7'-diaminomitosen-1' alpha-yl)guanine (5) and its 1' beta-isomer (6) and imidazolium ring opening to generate three 2,6-diamino-4-hydroxy-5-(N-formyl-2' beta, 7'-diaminomitosen-1' beta-yl)pyrimidine (FAPyr) derivatives that are substituted at N6 by isomeric 2'-deoxyribose units [i.e., 1' beta-furanose (7), 1' alpha-furanose (8), and 1' beta-pyranose (9)]. The structures of 5-9 were determined by spectroscopic methods. The same five adducts were obtained from d(GpC), but only the guanine adducts 5 and 6 were formed in DNA. Adducts 7-9 interconvert during high-performance liquid chromatography (HPLC). The unexpected isomerization of the deoxyribose moiety of the initially formed 1' beta-furanose adduct 7 to those of 8 and 9 occurs upon imidazolium ring opening, as discerned by the course of imidazolium cleavage of the simple models N7-ethyl- and N7-methylguanosine and N7-methyl-2'-deoxyguanosine. All ring-opened N7-alkylguanosine derivatives studied here exist as a mixture of distinct N-formyl rotamers, manifested by multiple interconverting peaks on HPLC and in the 1H NMR spectra. In the UV spectra of such derivatives, a new and diagnostic maximum at 218 nm (at pH 7) is observed. Acid-activated MC is found to alkylate preferentially the Gua-N7 position in deoxyguanosine or d(GpC), in contrast to reductively activated MC, which preferentially alkylates the Gua-N2 position. This finding is explained by the different electronic structures of acid- and reduction-activated MC. In DNA, the N7 specificity of acid-activated MC is partially offset by steric factors.  相似文献   
67.
68.
69.
The overproduction, purification, and determination of the active-site catalytic nucleophile of the DNA (cytosine-5)-methyltransferase (DCMtase) enzyme M.HaeIII are reported. Incubation of purified M.HaeIII with an oligodeoxynucleotide specifically modified with the mechanism-based inhibitor 5-fluoro-2'-deoxycytidine [Osterman, D. G., et al. (1988) Biochemistry 27, 5204-5210], in the presence of the cofactor S-adenosyl-L-methionine (AdoMet), resulted in the formation of a covalent DNA-M.HaeIII complex, which was purified to homogeneity. Characterization of the intact complex showed it to consist of one molecule of the FdC-containing duplex oligonucleotide, one molecule of M.HaeIII, and one methyl group derived from AdoMet. Exhaustive proteolysis, reduction, and alkylation of the DNA-M.HaeIII complex led to the isolation of two DNA-bound peptides--one each from treatment with Pronase or trypsin--which were subjected to peptide sequencing in order to identify the DNA attachment site. Both peptides were derived from the region of M.HaeIII containing a Pro-Cys sequence that is conserved in all known DCMtases. At the position of this conserved Cys residue (Cys71), in the sequence of each peptide, was found an unidentified amino acid residue; all other amino acid residues were in accord with the known sequence. It is thus concluded that Cys71 of M.HaeIII forms a covalent bond to DNA during catalytic methyl transfer. This finding represents a direct experimental verification for the hypothesis that the conserved Cys residue of DCMtases is the catalytic nucleophile [Wu, J. C., & Santi, D. V. (1987) J. Biol. Chem. 262, 4778-4786].(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   
70.
The human 8-oxoguanine DNA glycosylase (hOGG1) protein is responsible for initiating base excision DNA repair of the endogenous mutagen 8-oxoguanine. Like nearly all DNA glycosylases, hOGG1 extrudes its substrate from the DNA helix and inserts it into an extrahelical enzyme active site pocket lined with residues that participate in lesion recognition and catalysis. Structural analysis has been performed on mutant versions of hOGG1 having changes in catalytic residues but not on variants having altered 7,8-dihydro-8-oxoguanine (oxoG) contact residues. Here we report high resolution structural analysis of such recognition variants. We found that Ala substitution at residues that contact the phosphate 5' to the lesion (H270A mutation) and its Watson-Crick face (Q315A mutation) simply removed key functionality from the contact interface but otherwise had no effect on structure. Ala substitution at the only residue making an oxoG-specific contact (G42A mutation) introduced torsional stress into the DNA contact surface of hOGG1, but this was overcome by local interactions within the folded protein, indicating that this oxoG recognition motif is "hardwired." Introduction of a side chain intended to sterically obstruct the active site pocket (Q315F mutation) led to two different structures, one of which (Q315F(*149)) has the oxoG lesion in an exosite flanking the active site and the other of which (Q315F(*292)) has the oxoG inserted nearly completely into the lesion recognition pocket. The latter structure offers a view of the latest stage in the base extrusion pathway yet observed, and its lack of catalytic activity demonstrates that the transition state for displacement of the lesion base is geometrically demanding.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号