首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2697篇
  免费   162篇
  2024年   7篇
  2023年   30篇
  2022年   27篇
  2021年   74篇
  2020年   35篇
  2019年   58篇
  2018年   79篇
  2017年   60篇
  2016年   88篇
  2015年   134篇
  2014年   139篇
  2013年   206篇
  2012年   234篇
  2011年   223篇
  2010年   138篇
  2009年   119篇
  2008年   181篇
  2007年   166篇
  2006年   139篇
  2005年   136篇
  2004年   97篇
  2003年   86篇
  2002年   93篇
  2001年   28篇
  2000年   25篇
  1999年   21篇
  1998年   32篇
  1997年   14篇
  1996年   14篇
  1995年   14篇
  1994年   9篇
  1993年   9篇
  1992年   13篇
  1991年   14篇
  1990年   9篇
  1989年   7篇
  1988年   6篇
  1987年   9篇
  1986年   9篇
  1985年   14篇
  1984年   6篇
  1983年   6篇
  1982年   7篇
  1981年   7篇
  1980年   4篇
  1979年   5篇
  1978年   6篇
  1977年   7篇
  1976年   6篇
  1969年   2篇
排序方式: 共有2859条查询结果,搜索用时 15 毫秒
51.
Abstract

p21-activated kinases (Paks) play an integral component in various cellular diverse processes. The full activation of Pak is dependent upon several serine residues present in the N-terminal region, a threonine present at the activation loop, and finally the phosphorylation of these residues ensure the complete activation of Pak1. The present study deals with the identification of novel potent candidates of Pak1 using computational methods as anti-cancer compounds. A diverse energy based pharmacophore (e-pharmacophore) was developed using four co-crystal inhibitors of Pak1 having pharmacophore features of 5 (DRDRR), 6 (DRHADR), and 7 (RRARDRP and DRRDADH) hypotheses. These models were used for rigorous screening against e-molecule database. The obtained hits were filtered using ADME/T and molecular docking to identify the high affinity binders. These hits were subjected to hierarchical clustering using dendritic fingerprint inorder to identify structurally diverse molecules. The diverse hits were scored against generated water maps to obtain WM/MM ΔG binding energy. Furthermore, molecular dynamics simulation and density functional theory calculations were performed on the final hits to understand the stability of the complexes. Five structurally diverse novel Pak1 inhibitors (4835785, 32198676, 32407813, 76038049, and 32945545) were obtained from virtual screening, water thermodynamics and WM/MM ΔG binding energy. All hits revealed similar mode of binding pattern with the hinge region residues replacing the unstable water molecules in the binding site. The obtained novel hits could be used as a platform to design potent drugs that could be experimentally tested against cancer patients having increased Pak1 expression.  相似文献   
52.
Neurochemical Research - Post-translational modification (PTMs) of proteins by ubiquitin and ubiquitin-like modifiers such as interferon-stimulated gene 15 (ISG15) and small ubiquitin-related...  相似文献   
53.
Base excision repair (BER) and mismatch repair (MMR) pathways play an important role in modulating cis-Diamminedichloroplatinum (II) (cisplatin) cytotoxicity. In this article, we identified a novel mechanistic role of both BER and MMR pathways in mediating cellular responses to cisplatin treatment. Cells defective in BER or MMR display a cisplatin-resistant phenotype. Targeting both BER and MMR pathways resulted in no additional resistance to cisplatin, suggesting that BER and MMR play epistatic roles in mediating cisplatin cytotoxicity. Using a DNA Polymerase β (Polβ) variant deficient in polymerase activity (D256A), we demonstrate that MMR acts downstream of BER and is dependent on the polymerase activity of Polβ in mediating cisplatin cytotoxicity. MSH2 preferentially binds a cisplatin interstrand cross-link (ICL) DNA substrate containing a mismatch compared with a cisplatin ICL substrate without a mismatch, suggesting a novel mutagenic role of Polβ in activating MMR in response to cisplatin. Collectively, these results provide the first mechanistic model for BER and MMR functioning within the same pathway to mediate cisplatin sensitivity via non-productive ICL processing. In this model, MMR participation in non-productive cisplatin ICL processing is downstream of BER processing and dependent on Polβ misincorporation at cisplatin ICL sites, which results in persistent cisplatin ICLs and sensitivity to cisplatin.  相似文献   
54.

Background

Interaction of the plant alkaloid aristololactam-β-d-glucoside and the antitumor drug daunomycin with single stranded RNAs poly(G), poly(I), poly(C) and poly(U) has been investigated.

Methods

Biophysical techniques of absorption, fluorescence, competition dialysis, circular dichroism, and microcalorimetry have been used.

Results

Absorption and fluorescence studies have revealed noncooperative binding of ADG and DAN to the single stranded RNAs. The binding affinity of ADG varied as poly(G) > poly(I) > > poly(C) > poly(U). The affinity of DAN was one order higher than that of ADG and varied as poly(G) > poly(I) > poly(U) > poly(C). This binding preference was further confirmed by competition dialysis assay. The thermodynamics of the binding was characterised to be favourable entropy and enthalpic terms but their contributions were different for different systems. The major non-polyelectrolytic contribution to the binding revealed from salt dependent data appears to be arising mostly from stacking of DAN and ADG molecules with the bases leading to partial intercalation to single stranded RNA structures. Small negative heat capacity values have been observed in all the four cases.

Conclusions

This study presents the comparative structural and thermodynamic profiles of the binding of aristololactam-β-d-glucoside and daunomycin to single stranded polyribonucleotides.

General significance

These results suggest strong, specific but differential binding of these drug molecules to the single stranded RNAs and highlight the role of their structural differences in the interaction profile.  相似文献   
55.
Dry root rot caused by Rhizoctonia bataticola (Macrophomina phaseolina) of chickpea (Cicer arietinum L.) is gaining importance in the changed scenario of climate when growing crop is predisposed to high temperature and moisture stress. Being mainly a soil-inhabiting pathogen, many environmental and soil factors are responsible for the development of disease. No systematic research related to the biology, ecology and epidemiology of dry root rot in chickpea has been conducted so far. Research is needed to improve the identification and characterisation of variability within its epidemiological and pathological niches. Limited literature available on host plant resistance for dry root rot indicated lack of resistant sources for this disease. The present article discusses current status of the disease in the context of climate change and possible management options to alleviate the problem.  相似文献   
56.
We have previously observed that in vivo exposure to growing melanoma tumors fundamentally alters activated T cell homeostasis by suppressing the ability of naïve T cells to undergo antigen-driven proliferative expansion. We hypothesized that exposure of T cells in later stages of differentiation to melanoma would have similar suppressive consequences. C57BL/6 mice were inoculated with media or syngeneic B16F10 melanoma tumors 8 or 60 days after infection with lymphocytic choriomeningitis virus (LCMV), and splenic populations of LCMV-specific T cells were quantified using flow cytometry 18 days after tumor inoculation. Inoculation with melanoma on post-infection day 8 potentiated the contraction of previously activated T cells. This enhanced contraction was associated with increased apoptotic susceptibility among T cells from tumor-bearing mice. In contrast, inoculation with melanoma on post-infection day 60 did not affect the ability of previously established memory T cells to maintain themselves in stable numbers. In addition, the ability of previously established memory T cells to respond to LCMV challenge was unaffected by melanoma. Following adoptive transfer into melanoma-bearing mice, tumor-specific memory T cells were significantly more effective at controlling melanoma growth than equivalent numbers of tumor-specific effector T cells. These observations suggest that memory T cells are uniquely resistant to suppressive influences exerted by melanoma on activated T cell homeostasis; these findings may have implications for T cell–based cancer immunotherapy.  相似文献   
57.

Background and aims

Sustained interaction of advanced glycation end products (AGEs) with their receptor RAGE and subsequent signaling plays an important role in the development of diabetic complications. Genetic variation of RAGE gene may be associated with the development of vascular complications in type 2 diabetes mellitus (T2DM).

Objectives

The present study aimed to explore the possible association of RAGE gene polymorphisms namely − 374T/A, − 429T/C and G82S with serum level of AGEs, paraoxonase (PON1) activity and macro-vascular complications (MVC) in Indian type 2 diabetes mellitus patients (T2DM).

Methods

A total of 265 diabetic patients, including DM without any complications (n = 135), DM-MVC (n = 130) and 171 healthy individuals were enrolled. Genotyping of RAGE variants were assessed by polymerase chain reaction-restriction fragment length polymorphism. Serum AGEs were estimated by ELISA and fluorometrically. and PON1 activity was assessed spectrophotometrically.

Results

Of the three examined SNPs, association of − 429T/C polymorphism with MVC in T2DM was observed (OR = 3.001, p = 0.001) in the dominant model. Allele ‘A’ of − 374T/A polymorphism seems to confer better cardiac outcome in T2DM. Patients carrying C allele (− 429T/C) and S allele (G82S) had significantly higher AGEs levels. − 429T/C polymorphism was also found to be associated with low PON1 activity. Interaction analysis revealed that the risk of development of MVC was higher in T2DM patients carrying both a CC genotype of − 429T/C polymorphism and a higher level of AGEs (OR = 1.343, p = 0.040).

Conclusion

RAGE gene polymorphism has a significant effect on AGEs level and PON1 activity in diabetic subjects compared to healthy individuals. Diabetic patients with a CC genotype of − 429T/C are prone to develop MVC, more so if AGEs levels are high and PON1 activity is low.  相似文献   
58.
59.
Abstract

The binding of the benzodioxolo-benzoquinolizine alkaloid, berberine chloride to natural and synthetic DNAs has been studied by intrinsic and extrinsic circular dichroic measurements. Binding of berberine causes changes in the circular dichroism spectrum of DNA as shown by the increase of molar ellipticity of the 270nm band, but with very little change of the 240nm band. The molar ellipticity at the saturation depends strongly on the base composition of DNA and also on salt concentration, but always larger for the AT rich DNA than the GC rich DNA The features in the circular dichroic spectral changes of berberine-synthetic DNA complexes were similar to that of native DNA but depends on the sequence of base pairs.

On binding to DNA and polynucleotides, the alkaloid becomes optically active. The extrinsic circular dichroism developed in the visible absorption region (300–500nm) for the berberine-DNA complexes shows two broad spectral bands in the regions 425–440nm and 340–360nm with the maximum varying depending on base composition and sequence of DNA While the 425nm band shows less variation on the binding ratio, the 360nm band is remarkably dependent on the DNA/alkaloid ratio. The generation of the alkaloid associated extrinsic circular dichroic bands is not dependent on the base composition or sequence of base pairs, but the nature and magnitude of the bands are very much dependent on these two factors and also on the salt concentration. The interpretation of the results with respect to the modes of the alkaloid binding to DNA are presented.  相似文献   
60.
ABSTRACT

Phytoremediation is an eco friendly approach for remediation of contaminated soil and water using plants. Phytoremediation is comprised of two components, one by the root colonizing microbes and the other by plants themselves, which degrade the toxic compounds to further non-toxic metabolites. Various compounds, viz. organic compounds, xenobiotics, pesticides and heavy metals, are among the contaminants that can be effectively remediated by plants. Plant cell cultures, hairy roots and algae have been studied for their ability to degrade a number of contaminants. They exhibit various enzymatic activities for degradation of xenobiotics, viz. dehalogenation, denitrification leading to breakdown of complex compounds to simple and non-toxic products. Plants and algae also have the ability to hyper accumulate various heavy metals by the action of phytochelatins and metallothioneins forming complexes with heavy metals and translocate them into vacuoles. Molecular cloning and expression of heavy metal accumulator genes and xenobiotic degrading enzyme coding genes resulted in enhanced remediation rates, which will be helpful in making the process for large-scale application to remediate vast areas of contaminated soils. A few companies worldwide are also working on this aspect of bioremediation, mainly by transgenic plants to replace expensive physical or chemical remediation techniques. Selection and testing multiple hyperaccumulator plants, protein engineering of phytochelatin and membrane transporter genes and their expression would enhance the rate of phytoremediation, making this process a successful one for bioremediation of environmental contamination. Recent years have seen major investments in the R&D, which have also resulted in competition of filing patents by several companies for economic gains. The details of science & technology related to phytoremediation have been discussed with a focus on future trends and prospects of global relevance.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号