首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   219篇
  免费   18篇
  2021年   1篇
  2020年   2篇
  2019年   1篇
  2018年   1篇
  2017年   4篇
  2016年   1篇
  2015年   9篇
  2014年   10篇
  2013年   4篇
  2012年   13篇
  2011年   11篇
  2010年   7篇
  2009年   11篇
  2008年   9篇
  2007年   14篇
  2006年   11篇
  2005年   5篇
  2004年   10篇
  2003年   8篇
  2002年   9篇
  2001年   8篇
  2000年   8篇
  1999年   8篇
  1998年   10篇
  1997年   4篇
  1996年   3篇
  1995年   7篇
  1994年   2篇
  1993年   6篇
  1992年   8篇
  1991年   3篇
  1990年   5篇
  1989年   2篇
  1988年   1篇
  1987年   1篇
  1986年   3篇
  1985年   4篇
  1984年   3篇
  1983年   1篇
  1982年   2篇
  1981年   2篇
  1977年   1篇
  1975年   1篇
  1973年   1篇
  1970年   1篇
  1967年   1篇
排序方式: 共有237条查询结果,搜索用时 140 毫秒
81.
A/B-type metallocarboxypeptidases (MCPs) are among the most thoroughly studied proteolytic enzymes, and their catalytic mechanisms have been considered as prototypes even for several unrelated metalloprote(in)ase families. It has long been postulated that the nature of the side chains of at least five substrate residues, i.e., P4-P1', influence Km and kcat and that once the peptide or protein substrate is cleaved, both products remain in the first instance bound to the active-site cleft of the enzyme in a double-product complex. Structural details of binding of substrate to the nonprimed side of the cleft have largely relied on complexes with protein inhibitors and peptidomimetic small-molecule inhibitors that do not span the entire groove. In the former, the presence of N-terminal globular protein domains participating in large-scale interactions with the surface of the cognate catalytic domain outside the active-site cleft mostly conditions the way their C-terminal tails bind to the cleft. Accordingly, they may not be accurate models for a product complex. We hereby provide the structural details of a true cleaved double-product complex with a hexapeptide of an MCP engaged in prostate cancer, human carboxypeptidase A4, employing diffraction data to 1.6 A resolution (Rcryst and Rfree = 0.159 and 0.176, respectively). These studies provide detailed information about subsites S5-S1' and contribute to our knowledge of the cleavage mechanism, which is revisited in light of these new structural insights.  相似文献   
82.
The tumor microenvironment plays key roles in cancer biology, but its impact on the regulation of signaling pathway activity in cancer cells has not been systemically investigated. We designed an analytical strategy that allows differential analysis of signaling between cancer and stromal cells present in tumor xenografts. We used this approach to investigate how in vivo growth conditions and PI3K inhibitors regulate pathway activities in both cancer and stromal cell populations. We found that, despite inducing more modest changes in protein expression, in vivo growing conditions extensively rewired protein kinase networks in cancer cells. As a result, different sets of phosphorylation sites were modulated by PI3K inhibitors in cancer cells growing in tumors relative to when these cells were in culture. The p110δ PI3K-selective compound CAL-101 (Idelalisib) did not inhibit markers of PI3K activity in cancer or stromal cells; however, unexpectedly, it induced phosphorylation on SQ motifs in both subpopulations of tumor cells in vivo but not in vitro. Thus, the interaction between cancer cells and the stroma modulated the ability of PI3K inhibitors to induce the activation of apoptosis in solid tumors. Our study provides proof-of-principle of a proteomics workflow for measuring signaling specifically in cancer and stromal cells and for investigating how cancer biochemistry is modulated in vivo.Solid tumors contain a heterogeneous population of cells. Transformed epithelial cells recruit different types of somatic cells to the tumor microenvironment where they influence varying aspects of cancer biology. The role of heterotypic communication between normal stromal cells and transformed cancer cells is well established (1, 2). Different somatic cell types, including fibroblasts, epithelial cells, and cells of the immune system—all of which are found in tumors—promote cancer cell development by means of gap-junction intercellular communication, direct cell-to-cell contacts, and by the release of growth factors, enzymes, and cytokines that act on neighboring malignant cells (36).The tumor microenvironment determines the ability of cancer cells to survive in specific organs and their ability to proliferate and metastasize (79). Growth factors released from tumor-associated stromal cells also influence how cancer cells respond to drug administration (10). Therefore, the advancement of targeted cancer therapies requires an understanding of how the tumor microenvironment modulates the biochemistry of transformed cancer cells. In addition, targeting the tumor stroma is emerging as an intriguing concept for the development of anti-cancer therapies (11). It is therefore important to investigate specific effects of compounds in clinical development on stromal cells in addition to those exerted toward malignant cancer cells (12).Here we investigated the effects that changes in growing conditions from a two-dimensional cell culture to an in vivo three-dimensional tumor environment had in modulating protein and phosphoprotein expression in human cancer cells. For this, we used mass spectrometry (MS) to specifically measure cancer and stromal proteomes and phosphoproteomes within mouse tumor xenografts.We also investigated the effects that the pharmacological inhibitors of PI3K, namely GDC-0941 or CAL-101, would have on the phosphoproteomes of stromal cells relative to cancer cells in solid tumors. GDC-0941 is an inhibitor with specificity for class I PI3Ks, whereas CAL-101 specificity is restricted to the p110δ isoform of PI3K (13, 14), which in untransformed tissues is mainly found in leukocytes (15). The PI3K signaling pathway is often deregulated in different cancer types (16), including colorectal cancer (17), and both compounds used in this study are in different stages of clinical development (1820). PI3K signaling has also been implicated in mediating the effects that the microenvironment has on cancer cells (21).We found that in vivo growth conditions had profound effects on phosphoprotein expression, which was reflected on the phosphorylation sites modulated by PI3K inhibitors in vivo relative to in vitro and in their ability to induce apoptotic markers across these two cell culture conditions.  相似文献   
83.

Background

The expansion of adipose tissue is linked to the development of its vasculature, which appears to have the potential to regulate the onset of obesity. However, at present, there are no studies highlighting the relationship between human adipose tissue angiogenesis and obesity-associated insulin resistance (IR).

Results

Our aim was to analyze and compare angiogenic factor expression levels in both subcutaneous (SC) and omentum (OM) adipose tissues from morbidly obese patients (n = 26) with low (OB/L-IR) (healthy obese) and high (OB/H-IR) degrees of IR, and lean controls (n = 17). Another objective was to examine angiogenic factor correlations with obesity and IR. Here we found that VEGF-A was the isoform with higher expression in both OM and SC adipose tissues, and was up-regulated 3-fold, together with MMP9 in OB/L-IR as compared to leans. This up-regulation decreased by 23% in OB/-H-IR compared to OB/L-IR. On the contrary, VEGF-B, VEGF-C and VEGF-D, together with MMP15 was down-regulated in both OB/H-IR and OB/L-IR compared to lean patients. Moreover, MMP9 correlated positively and VEGF-C, VEGF-D and MMP15 correlated negatively with HOMA-IR, in both SC and OM.

Conclusion

We hereby propose that the alteration in MMP15, VEGF-B, VEGF-C and VEGF-D gene expression may be caused by one of the relevant adipose tissue processes related to the development of IR, and the up-regulation of VEGF-A in adipose tissue could have a relationship with the prevention of this pathology.  相似文献   
84.
Leptin, adiponectin and IL18 are adipokines related with obesity, insulin resistance and dyslipidemia in the general population. Treated HIV-1-infected patients with lipodystrophy may develop insulin resistance and proatherogenic dyslipidemia. We assessed the relationship between plasma adipokine levels, adipokine genetics, lipodystrophy and metabolic disturbances. Plasma leptin, adiponectin and IL18 levels were assessed in 446 individuals: 282 HIV-1-infected patients treated with antiretroviral drugs (132 with lipodystrophy and 150 without) and 164 uninfected controls (UC). The LEP2410A>G, LEPRQ223R, ADIPQ276G>T, ADIPOR2-Intron5A>G and IL18-607C>A polymorphisms were validated by sequencing. Leptin levels were higher in UC than in HIV-1-infected, either with or without lipodystrophy (p<0.001 for both comparisons) and were lower in patients with lipodystrophy compared with those without lipodystrophy (p=0.006). In patients with lipodystrophy, leptin had a positive correlation with insulin and with HOMA-IR. Adiponectin levels were non-significantly different in UC and HIV-1-infected patients. Patients with lipodystrophy had lower adiponectin levels than non-lipodystrophy subjects (p<0.001). In patients with lipodystrophy, adiponectin was negatively correlated with insulin, HOMA-IR and triglycerides. Plasma IL18 levels were higher in HIV-1-infected patients compared with UC (p<0.001), and no differences were found according to the presence of lipodystrophy. In patients with lipodystrophy there was a negative correlation between IL18 levels and LDLc. Genetic analyses indicated no significant associations with lipodystrophy nor with insulin resistance or with lipid abnormalities. In conclusion, HIV-1-infected patients have reduced plasma leptin levels. This reduction is magnified in patients with lipodystrophy whose adiponectin levels were lower than that of non-lipodystrophy subjects. Plasma IL18 levels are increased in infected patients irrespective of the presence of lipodystrophy. The polymorphisms assessed are not associated with lipodystrophy or metabolic disturbances in treated HIV-1-infected patients.  相似文献   
85.

Objective

Zinc-α2 glycoprotein (ZAG) stimulates lipid loss by adipocytes and may be involved in the regulation of adipose tissue metabolism. However, to date no studies have been made in the most extreme of obesity. The aims of this study are to analyze ZAG expression levels in adipose tissue from morbidly obese patients, and their relationship with lipogenic and lipolytic genes and with insulin resistance (IR).

Methods

mRNA expression levels of PPARγ, IRS-1, IRS-2, lipogenic and lipolytic genes and ZAG were quantified in visceral (VAT) and subcutaneous adipose tissue (SAT) of 25 nondiabetic morbidly obese patients, 11 with low IR and 14 with high IR. Plasma ZAG was also analyzed.

Results

The morbidly obese patients with low IR had a higher VAT ZAG expression as compared with the patients with high IR (p = 0.023). In the patients with low IR, the VAT ZAG expression was greater than that in SAT (p = 0.009). ZAG expression correlated between SAT and VAT (r = 0.709, p<0.001). VAT ZAG expression was mainly predicted by insulin, HOMA-IR, plasma adiponectin and expression of adiponectin and ACSS2. SAT ZAG expression was only predicted by expression of ATGL.

Conclusions

ZAG could be involved in modulating lipid metabolism in adipose tissue and is associated with insulin resistance. These findings suggest that ZAG may be a useful target in obesity and related disorders, such as diabetes.  相似文献   
86.

Background  

Microbes must sense environmental stresses, transduce these signals and mount protective responses to survive in hostile environments. In this study we have tested the hypothesis that fungal stress signalling pathways have evolved rapidly in a niche-specific fashion that is independent of phylogeny. To test this hypothesis we have compared the conservation of stress signalling molecules in diverse fungal species with their stress resistance. These fungi, which include ascomycetes, basidiomycetes and microsporidia, occupy highly divergent niches from saline environments to plant or mammalian hosts.  相似文献   
87.

Background  

Tunicates have been recently revealed to be the closest living relatives of vertebrates. Yet, with more than 2500 described species, details of their evolutionary history are still obscure. From a molecular point of view, tunicate phylogenetic relationships have been mostly studied based on analyses of 18S rRNA sequences, which indicate several major clades at odds with the traditional class-level arrangements. Nonetheless, substantial uncertainty remains about the phylogenetic relationships and taxonomic status of key groups such as the Aplousobranchia, Appendicularia, and Thaliacea.  相似文献   
88.
A novel and potent family of metallocarboxypeptidase inhibitors based on thioxophosphoranyl oxiranes is presented. These compounds bear aryl or heteroaryl substituents with trans-stereochemistry with respect to the phosphorylated group and they have been synthesized by the addition of [bis(diisopropylamino)phosphino](trimethylsilyl)carbene to the corresponding aldehydes and the subsequent thiolation of the phosphine. These oxiranes contain a tetrahedral P atom harboring shielded N,N-groups. The screening of their biological activity as metallocarboxypeptidase inhibitors and some structural studies, as well as full experimental details for the new compounds, is disclosed. Thus, from the analysis of their activity against the prototypical metallocarboxypeptidases A and B (CPA and CPB), we have observed that hydrophobic phosphorylated oxiranes perform better as CPB inhibitors, reaching Ki values comparable to classical synthetic carboxypeptidase inhibitors. X-ray diffraction analysis revealed that the packing in the structure of one phosphorylated oxirane is mediated mainly by hydrophobic contacts and that the N,N-groups are highly flexible. Consequently, phosphorylated oxiranes might constitute an attractive material for subsequent improvements in the design of novel inhibitors against human proteolytic enzymes with enhanced oral availability.  相似文献   
89.
Methylation of the cytosine is the most frequent epigenetic modification of DNA in mammalian cells. In humans, most of the methylated cytosines are found in CpG-rich sequences within tandem and interspersed repeats that make up to 45% of the human genome, being Alu repeats the most common family. Demethylation of Alu elements occurs in aging and cancer processes and has been associated with gene reactivation and genomic instability. By targeting the unmethylated SmaI site within the Alu sequence as a surrogate marker, we have quantified and identified unmethylated Alu elements on the genomic scale. Normal colon epithelial cells contain in average 25 486 ± 10 157 unmethylated Alu's per haploid genome, while in tumor cells this figure is 41 995 ± 17 187 (P = 0.004). There is an inverse relationship in Alu families with respect to their age and methylation status: the youngest elements exhibit the highest prevalence of the SmaI site (AluY: 42%; AluS: 18%, AluJ: 5%) but the lower rates of unmethylation (AluY: 1.65%; AluS: 3.1%, AluJ: 12%). Data are consistent with a stronger silencing pressure on the youngest repetitive elements, which are closer to genes. Further insights into the functional implications of atypical unmethylation states in Alu elements will surely contribute to decipher genomic organization and gene regulation in complex organisms.  相似文献   
90.
GMDD: a database of GMO detection methods   总被引:1,自引:0,他引:1  

Background  

Since more than one hundred events of genetically modified organisms (GMOs) have been developed and approved for commercialization in global area, the GMO analysis methods are essential for the enforcement of GMO labelling regulations. Protein and nucleic acid-based detection techniques have been developed and utilized for GMOs identification and quantification. However, the information for harmonization and standardization of GMO analysis methods at global level is needed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号