首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   219篇
  免费   18篇
  2021年   1篇
  2020年   2篇
  2019年   1篇
  2018年   1篇
  2017年   4篇
  2016年   1篇
  2015年   9篇
  2014年   10篇
  2013年   4篇
  2012年   13篇
  2011年   11篇
  2010年   7篇
  2009年   11篇
  2008年   9篇
  2007年   14篇
  2006年   11篇
  2005年   5篇
  2004年   10篇
  2003年   8篇
  2002年   9篇
  2001年   8篇
  2000年   8篇
  1999年   8篇
  1998年   10篇
  1997年   4篇
  1996年   3篇
  1995年   7篇
  1994年   2篇
  1993年   6篇
  1992年   8篇
  1991年   3篇
  1990年   5篇
  1989年   2篇
  1988年   1篇
  1987年   1篇
  1986年   3篇
  1985年   4篇
  1984年   3篇
  1983年   1篇
  1982年   2篇
  1981年   2篇
  1977年   1篇
  1975年   1篇
  1973年   1篇
  1970年   1篇
  1967年   1篇
排序方式: 共有237条查询结果,搜索用时 15 毫秒
71.
Although there is a significant knowledge about mammalian metallocarboxypeptidases, the data available on this family of enzymes is very poor for invertebrate forms. Here we present the biochemical characterization of a metallocarboxypeptidase from the insect Helicoverpa armigera (Lepidoptera: Noctuidae), a devastating pest spread in subtropical regions of Europe, Asia, Africa and Oceania. The zymogen of this carboxypeptidase (PCPAHa) has been expressed at high levels in a Pichia pastoris system and shown to display the characteristics of the enzyme purified from the insect midgut. The in vitro activation process of the proenzyme differs significantly from the mammalian ones. The lysine-specific endoprotease LysC activates PCPAHa four times more efficiently than trypsin, the general activating enzyme for all previously studied metalloprocarboxypeptidases. LysC and trypsin independently use two different activation targets and the presence of sugars in the vicinity of the LysC activation point affects the activation process, indicating a possible modulation of the activation mechanism. During the activation with LysC the prodomain is degraded, while the carboxypeptidase moiety remains intact except for a C-terminal octapeptide that is rapidly released. Interestingly, the sequence at the cleavage point for the release of the octapeptide is also found at the boundary between the activation peptide and the enzyme moieties. The active enzyme (CPAHa) is shown to have a very broad substrate specificity, as it appears to be the only known metallocarboxypeptidase capable of efficiently hydrolysing basic and aliphatic residues and, to a much lower extent, acidic residues. Two carboxypeptidase inhibitors, from potato and leech, were tested against CPAHa. The former, of vegetal origin, is the most efficient metallocarboxypeptidase inhibitor described so far, with a Ki in the pm range.  相似文献   
72.
Induction of inner ear fate by FGF3   总被引:6,自引:0,他引:6  
Loss-of-function experiments in avians and mammals have provided conflicting results on the capacity of fibroblast growth factor 3 (FGF3) to act as a secreted growth factor responsible for induction and morphogenesis of the vertebrate inner ear. Using a novel technique for gene transfer into chicken embryos, we have readdressed the role of FGF3 during inner ear development in avians. We find that ectopic expression of FGF3 results in the formation of ectopic placodes which express otic marker genes. The ectopically induced placodes form vesicles which show the characteristic gene expression pattern of a developing inner ear. Ectopic expression of FGF3 also influences the formation of the normal orthotopic inner ear, whereas another member of the FGF family, FGF2, shows no effects on inner ear induction. These results demonstrate that a single gene can induce inner ear fate and reveal an unexpectedly widespread competence of the surface ectoderm to form sensory placodes in higher vertebrates.  相似文献   
73.

Background  

The polypeptides involved in amyloidogenesis may be globular proteins with a defined 3D-structure or natively unfolded proteins. The first class includes polypeptides such as β2-microglobulin, lysozyme, transthyretin or the prion protein, whereas β-amyloid peptide, amylin or α-synuclein all belong to the second class. Recent studies suggest that specific regions in the proteins act as "hot spots" driving aggregation. This should be especially relevant for natively unfolded proteins or unfolded states of globular proteins as they lack significant secondary and tertiary structure and specific intra-chain interactions that can mask these aggregation-prone regions. Prediction of such sequence stretches is important since they are potential therapeutic targets.  相似文献   
74.
In Saccharomyces cerevisiae, reduction of NAD(+) to NADH occurs in dissimilatory as well as in assimilatory reactions. This review discusses mechanisms for reoxidation of NADH in this yeast, with special emphasis on the metabolic compartmentation that occurs as a consequence of the impermeability of the mitochondrial inner membrane for NADH and NAD(+). At least five mechanisms of NADH reoxidation exist in S. cerevisiae. These are: (1) alcoholic fermentation; (2) glycerol production; (3) respiration of cytosolic NADH via external mitochondrial NADH dehydrogenases; (4) respiration of cytosolic NADH via the glycerol-3-phosphate shuttle; and (5) oxidation of intramitochondrial NADH via a mitochondrial 'internal' NADH dehydrogenase. Furthermore, in vivo evidence indicates that NADH redox equivalents can be shuttled across the mitochondrial inner membrane by an ethanol-acetaldehyde shuttle. Several other redox-shuttle mechanisms might occur in S. cerevisiae, including a malate-oxaloacetate shuttle, a malate-aspartate shuttle and a malate-pyruvate shuttle. Although key enzymes and transporters for these shuttles are present, there is as yet no consistent evidence for their in vivo activity. Activity of several other shuttles, including the malate-citrate and fatty acid shuttles, can be ruled out based on the absence of key enzymes or transporters. Quantitative physiological analysis of defined mutants has been important in identifying several parallel pathways for reoxidation of cytosolic and intramitochondrial NADH. The major challenge that lies ahead is to elucidate the physiological function of parallel pathways for NADH oxidation in wild-type cells, both under steady-state and transient-state conditions. This requires the development of techniques for accurate measurement of intracellular metabolite concentrations in separate metabolic compartments.  相似文献   
75.

Context

The Activin A-Follistatin system has emerged as an important regulator of lipid and glucose metabolism with possible repercussions on fetal growth.

Objective

To analyze circulating activin A, follistatin and follistatin-like-3 (FSTL3) levels and their relationship with glucose metabolism in pregnant women and their influence on fetal growth and neonatal adiposity.

Design and methods

A prospective cohort was studied comprising 207 pregnant women, 129 with normal glucose tolerance (NGT) and 78 with gestational diabetes mellitus (GDM) and their offspring. Activin A, follistatin and FSTL3 levels were measured in maternal serum collected in the early third trimester of pregnancy. Serial fetal ultrasounds were performed during the third trimester to evaluate fetal growth. Neonatal anthropometry was measured to assess neonatal adiposity.

Results

Serum follistatin levels were significantly lower in GDM than in NGT pregnant women (8.21±2.32 ng/mL vs 9.22±3.41, P = 0.012) whereas serum FSTL3 and activin A levels were comparable between the two groups. Serum follistatin concentrations were negatively correlated with HOMA-IR and positively with ultrasound growth parameters such as fractional thigh volume estimation in the middle of the third trimester and percent fat mass at birth. Also, in the stepwise multiple linear regression analysis serum follistatin levels were negatively associated with HOMA-IR (β = −0.199, P = 0.008) and the diagnosis of gestational diabetes (β = −0.138, P = 0.049). Likewise, fractional thigh volume estimation in the middle of third trimester and percent fat mass at birth were positively determined by serum follistatin levels (β = 0.214, P = 0.005 and β = 0.231, P = 0.002, respectively).

Conclusions

Circulating follistatin levels are reduced in GDM compared with NGT pregnant women and they are positively associated with fetal growth and neonatal adiposity. These data suggest a role of the Activin-Follistatin system in maternal and fetal metabolism during pregnancy.  相似文献   
76.
77.
Lipins are evolutionarily conserved Mg2+-dependent phosphatidate phosphatase (PAP) enzymes with essential roles in lipid biosynthesis. Mammals express three paralogues: lipins 1, 2, and 3. Loss of lipin 1 in mice inhibits adipogenesis at an early stage of differentiation and results in a lipodystrophic phenotype. The role of lipins at later stages of adipogenesis, when cells initiate the formation of lipid droplets, is less well characterized. We found that depletion of lipin 1, after the initiation of differentiation in 3T3-L1 cells but before the loading of lipid droplets with triacylglycerol, results in a reciprocal increase of lipin 2, but not lipin 3. We generated 3T3-L1 cells where total lipin protein and PAP activity levels are down-regulated by the combined depletion of lipins 1 and 2 at day 4 of differentiation. These cells still accumulated triacylglycerol but displayed a striking fragmentation of lipid droplets without significantly affecting their total volume per cell. This was due to the lack of the PAP activity of lipin 1 in adipocytes after day 4 of differentiation, whereas depletion of lipin 2 led to an increase of lipid droplet volume per cell. We propose that in addition to their roles during early adipogenesis, lipins also have a role in lipid droplet biogenesis.  相似文献   
78.
Sexual development is an essential phase in the Plasmodium life cycle, where male gametogenesis is an unusual and extraordinarily rapid process. It produces 8 haploid motile microgametes, from a microgametocyte within 15 minutes. Its unique achievement lies in linking the assembly of 8 axonemes in the cytoplasm to the three rounds of intranuclear genome replication, forming motile microgametes, which are expelled in a process called exflagellation. Surprisingly little is known about the actors involved in these processes. We are interested in kinesins, molecular motors that could play potential roles in male gametogenesis. We have undertaken a functional characterization in Plasmodium berghei of kinesin‐8B (PbKIN8B) expressed specifically in male gametocytes and gametes. By generating Pbkin8B‐gfp parasites, we show that PbKIN8B is specifically expressed during male gametogenesis and is associated with the axoneme. We created a ΔPbkin8B knockout cell line and analysed the consequences of the absence of PbKIN8B on male gametogenesis. We show that the ability to produce sexually differentiated gametocytes is not affected in ΔPbkin8B parasites and that the 3 rounds of genome replication occur normally. Nevertheless, the development to free motile microgametes is halted and the life cycle is interrupted in vivo. Ultrastructural analysis revealed that intranuclear mitoses are unaffected whereas cytoplasmic microtubules, although assembled in doublets and elongated, fail to assemble in the normal axonemal ‘9+2' structure and become motile. Absence of a functional axoneme prevented microgamete assembly and release from the microgametocyte, severely reducing infection of the mosquito vector. This is the first functional study of a kinesin involved in male gametogenesis. These results reveal a previously unknown role for PbKIN8B in male gametogenesis, providing new insights into Plasmodium flagellar formation.  相似文献   
79.
80.
Plasma acutephase protein pentraxin 3 (PTX3) concentration is dysregulated in human obesity and metabolic syndrome. Here, we explore its relationship with insulin secretion and sensitivity, obesity markers, and adipose tissue PTX3 gene expression. Plasma PTX3 protein levels were analyzed in a cohort composed of 27 lean [body mass index (BMI) ≤ 25 kg/m(2)] and 48 overweight (BMI 25-30 kg/m(2)) men (cohort 1). In this cohort, plasma PTX3 was negatively correlated with fasting triglyceride levels and insulin secretion after intravenous and oral glucose administration. Plasma PTX3 protein and PTX3 gene expression in visceral (VAT) and subcutaneous (SAT) whole adipose tissue and adipocyte and stromovascular fractions were analyzed in cohort 2, which was composed of 19 lean, 28 overweight, and 15 obese subjects (BMI >30 kg/m(2)). An inverse association with body weight and waist/hip ratio was observed in cohort 2. In VAT depots, PTX3 mRNA levels were higher in subjects with BMI >25 kg/m(2) than in lean subjects, positively correlated with IL-1β mRNA levels, and higher in the adipocyte than stromovascular fraction. Human preadipocyte SGBS cell line was used to study PTX3 production in response to factors that obesity entails. In SGBS adipocytes, PTX3 gene expression was enhanced by IL-1β and TNFα but not IL-6 or insulin. In conclusion, the negative correlation between PTX3 and glucose-stimulated insulin secretion suggests a role for PTX3 in metabolic control. PTX3 gene expression is upregulated in VAT depots in obesity, despite lower plasma PTX3 protein, and by some proinflammatory cytokines in cultured adipocytes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号