首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   421篇
  免费   42篇
  2021年   9篇
  2020年   8篇
  2019年   3篇
  2018年   11篇
  2017年   6篇
  2016年   12篇
  2015年   16篇
  2014年   28篇
  2013年   24篇
  2012年   23篇
  2011年   27篇
  2010年   15篇
  2009年   17篇
  2008年   25篇
  2007年   16篇
  2006年   26篇
  2005年   25篇
  2004年   25篇
  2003年   16篇
  2002年   17篇
  2001年   16篇
  2000年   13篇
  1999年   8篇
  1998年   5篇
  1997年   4篇
  1996年   2篇
  1995年   3篇
  1994年   3篇
  1993年   4篇
  1992年   7篇
  1991年   4篇
  1990年   7篇
  1989年   4篇
  1988年   4篇
  1986年   4篇
  1985年   2篇
  1982年   5篇
  1981年   2篇
  1979年   1篇
  1978年   2篇
  1976年   1篇
  1974年   1篇
  1973年   1篇
  1972年   1篇
  1967年   1篇
  1966年   1篇
  1965年   1篇
  1964年   2篇
  1963年   1篇
  1920年   1篇
排序方式: 共有463条查询结果,搜索用时 15 毫秒
61.
The centromeric histone H3 (CENH3) substitutes histone H3 within the nucleosomes of active centromeres in all eukaryotes. CENH3 deposition at centromeres is needed to assemble the kinetochore, a complex of conserved proteins responsible for correct chromosome segregation during nuclear division. Histones of regular nucleosomes are loaded during replication in S phase, while CENH3 deposition deviates from this pattern in yeast, human, and Drosophila melanogaster cells. Little is known about when and how CENH3 targets centromeric loci. Therefore, we determined the location and quantity of recombinant enhanced yellow fluorescent protein (EYFP)-CENH3 in mitotic root and endopolyploid leaf nuclei of transgenic Arabidopsis thaliana cells. Our data indicate significant loading of A. thaliana CENH3 during G2 (before splitting into sister kinetochores) rather than during the S or M phase of the cell cycle. The histone fold domain of the C-terminal part of CENH3 is sufficient to target A. thaliana centromeres. A. thaliana EYFP-CENH3 can recognize and target three different centromeric repeats of Arabidopsis lyrata but not field bean (Vicia faba) centromeres.  相似文献   
62.
The lifetime of nicotinic acetylcholine receptors (AChRs) in neuromuscular junctions (NMJs) is increased from <1 day to >1 week during early postnatal development. However, the exact timing of AChR stabilization is not known, and its correlation to the concurrent embryonic to adult AChR channel conversion, NMJ remodeling, and neuromuscular diseases is unclear. Using a novel time lapse in vivo imaging technology we show that replacement of the entire receptor population of an individual NMJ occurs end plate-specifically within hours. This makes it possible to follow directly in live animals changing stabilities of end plate receptors. In three different, genetically modified mouse models we demonstrate that the metabolic half-life values of synaptic AChRs increase from a few hours to several days after postnatal day 6. Developmental stabilization is independent of receptor subtype and apparently regulated by an intrinsic muscle-specific maturation program. Myosin Va, an F-actin-dependent motor protein, is also accumulated synaptically during postnatal development and thus could mediate the stabilization of end plate AChR.  相似文献   
63.
Active immunization with amyloid-β (Aβ) peptide 1-42 reverses amyloid plaque deposition in the CNS of patients with Alzheimer's disease and in amyloid precursor protein transgenic mice. However, this treatment may also cause severe, life-threatening meningoencephalitis. Physiological responses to immunization with Aβ(1-42) are poorly understood. In this study, we characterized cognitive and immunological consequences of Aβ(1-42)/CFA immunization in C57BL/6 mice. In contrast to mice immunized with myelin oligodendrocyte glycoprotein (MOG)(35-55)/CFA or CFA alone, Aβ(1-42)/CFA immunization resulted in impaired exploratory activity, habituation learning, and spatial-learning abilities in the open field. As morphological substrate of this neurocognitive phenotype, we identified a disseminated, nonfocal immune cell infiltrate in the CNS of Aβ(1-42)/CFA-immunized animals. In contrast to MOG(35-55)/CFA and PBS/CFA controls, the majority of infiltrating cells in Aβ(1-42)/CFA-immunized mice were CD11b(+)CD14(+) and CD45(high), indicating their blood-borne monocyte/macrophage origin. Immunization with Aβ(1-42)/CFA was significantly more potent than immunization with MOG(35-55)/CFA or CFA alone in activating macrophages in the secondary lymphoid compartment and peripheral tissues. Studies with TLR2/4-deficient mice revealed that the TLR2/4 pathway mediated the Aβ(1-42)-dependent proinflammatory cytokine release from cells of the innate immune system. In line with this, TLR2/4 knockout mice were protected from cognitive impairment upon immunization with Aβ(1-42)/CFA. Thus, this study identifies adjuvant effects of Aβ(1-42), which result in a clinically relevant neurocognitive phenotype highlighting potential risks of Aβ immunotherapy.  相似文献   
64.
The identification of hereditary familial Alzheimer disease (FAD) mutations in the amyloid precursor protein (APP) and presenilin-1 (PS1) corroborated the causative role of amyloid-β peptides with 42 amino acid residues (Aβ42) in the pathogenesis of AD. Although most FAD mutations are known to increase Aβ42 levels, mutations within the APP GxxxG motif are known to lower Aβ42 levels by attenuating transmembrane sequence dimerization. Here, we show that aberrant Aβ42 levels of FAD mutations can be rescued by GxxxG mutations. The combination of the APP-GxxxG mutation G33A with APP-FAD mutations yielded a constant 60% decrease of Aβ42 levels and a concomitant 3-fold increase of Aβ38 levels compared with the Gly33 wild-type as determined by ELISA. In the presence of PS1-FAD mutations, the effects of G33A were attenuated, apparently attributable to a different mechanism of PS1-FAD mutants compared with APP-FAD mutants. Our results contribute to a general understanding of the mechanism how APP is processed by the γ-secretase module and strongly emphasize the potential of the GxxxG motif in the prevention of sporadic AD as well as FAD.  相似文献   
65.
Acidobacterium capsulatum is an acid-tolerant, encapsulated, Gram-negative member of the ubiquitous, but poorly understood Acidobacteria phylum. Little is known about the genetics and regulatory mechanisms of A. capsulatum. To begin to address this gap, we identified the gene encoding the A. capsulatum major sigma factor, rpoD, which encodes a 597-amino acid protein with a predicted sequence highly similar to the major sigma factors of Solibacter usitatus Ellin6076 and Geobacter sulfurreducens PCA. Purified hexahistidine-tagged RpoD migrates at approximately 70 kDa under SDS-PAGE conditions, which is consistent with the predicted MW of 69.2 kDa, and the gene product is immunoreactive with monoclonal antibodies specific for either bacterial RpoD proteins or the N-terminal histidine tag. A. capsulatum RpoD restored normal growth to E. coli strain CAG20153 under conditions that prevent expression of the endogenous rpoD. These results indicate we have cloned the gene encoding the A. capsulatum major sigma factor and the gene product is active in E. coli.  相似文献   
66.
p8 protein expression is known to be upregulated in the exocrine pancreas during acute pancreatitis. Own previous work revealed glucose-dependent p8 expression also in endocrine pancreatic beta-cells. Here we demonstrate that glucose-induced INS-1 beta-cell expansion is preceded by p8 protein expression. Moreover, isopropylthiogalactoside (IPTG)-induced p8 overexpression in INS-1 beta-cells (p8-INS-1) enhances cell proliferation and expansion in the presence of glucose only. Although beta-cell-related gene expression (PDX-1, proinsulin I, GLUT2, glucokinase, amylin) and function (insulin content and secretion) are slightly reduced during p8 overexpression, removal of IPTG reverses beta-cell function within 24 h to normal levels. In addition, insulin secretion of p8-INS-1 beta-cells in response to 0-25 mM glucose is not altered by preceding p8-induced beta-cell expansion. Adenovirally transduced p8 overexpression in primary human pancreatic islets increases proliferation, expansion, and cumulative insulin secretion in vitro. Transplantation of mock-transduced control islets under the kidney capsule of immunosuppressed streptozotocin-diabetic mice reduces blood glucose and increases human C-peptide serum concentrations to stable levels after 3 days. In contrast, transplantation of equal numbers of p8-transduced islets results in a continuous decrease of blood glucose and increase of human C-peptide beyond 3 days, indicating p8-induced expansion of transplanted human beta-cells in vivo. This is underlined by a doubling of insulin content in kidneys containing p8-transduced islet grafts explanted on day 9. These results establish p8 as a novel molecular mediator of glucose-induced pancreatic beta-cell expansion in vitro and in vivo and support the notion of existing beta-cell replication in the adult organism.  相似文献   
67.
The Sec61/SecY translocon mediates translocation of proteins across the membrane and integration of membrane proteins into the lipid bilayer. The structure of the translocon revealed a plug domain blocking the pore on the lumenal side. It was proposed to be important for gating the protein conducting channel and for maintaining the permeability barrier in its unoccupied state. Here, we analyzed in yeast the effect of introducing destabilizing point mutations in the plug domain or of its partial or complete deletion. Unexpectedly, even when the entire plug domain was deleted, cells were viable without growth phenotype. They showed an effect on signal sequence orientation of diagnostic signal-anchor proteins, a minor defect in cotranslational and a significant deficiency in posttranslational translocation. Steady-state levels of the mutant protein were reduced, and when coexpressed with wild-type Sec61p, the mutant lacking the plug competed poorly for complex partners. The results suggest that the plug is unlikely to be important for sealing the translocation pore in yeast but that it plays a role in stabilizing Sec61p during translocon formation.  相似文献   
68.
As an infectious disease, tuberculosis (TB) is one of the major causes of death worldwide. Paleopathological and paleomicrobiological studies indicate a long standing association of the causative agent Mycobacterium tuberculosis and its human host. Since the occurrence and the epidemic spread of this pathogen seem to be closely linked to social and biological factors, it is of particular interest to understand better the role of TB during periods of social and nutritional change such as the Neolithic. In this study, 118 individuals from three sites in Saxony‐Anhalt (Germany) dating to the Linear Pottery Culture (5400–4800 BC) were examined macroscopically to identify TB related bone lesions. In two individuals, Pott's disease was detected. In addition, periosteal reactions of varying degrees and frequency were observed mainly along the neck of the ribs in 6.5% (2/31) of subadults and 35.1% (20/57) of adults, with one site standing out markedly. Rib lesions, however, are not specific indicators of TB as they can also be caused by other diseases; so additional investigations were undertaken using histology and micro‐CT scans to say more about the disease process. Supplementary molecular analyses indicate the presence of pathogens belonging to the Mycobacterium tuberculosis complex in individuals of all sites. Furthermore, we discuss the occurrence and spread of TB during the Neolithic with regard to nutritional aspects and possible risks of infection. The data presented provide important insights into the health status of Early Neolithic populations in Central Germany. Am J Phys Anthropol, 2012. © 2012 Wiley Periodicals, Inc.  相似文献   
69.
Mass spectrometry has become indispensable for peptide and protein quantification in proteomics studies. When proteomics technologies are applied to understand the biology of plants, two-dimensional gel electrophoresis is still the prevalent method for protein fractionation, identification, and quantitation. In the present work, we have used LC-MS to compare an isotopic (ICPL) and isobaric (iTRAQ) chemical labeling technique to quantify proteins in the endosperm of Ricinus communis seeds at three developmental stages (IV, VI, and X). Endosperm proteins of each stage were trypsin-digested in-solution, and the same amount of peptides was labeled with ICPL and iTRAQ tags in two orders (forward and reverse). Each sample was submitted to nanoLC coupled to an LTQ-Orbitrap high-resolution mass spectrometer. Comparing labeling performance, iTRAQ was able to label 99.8% of all identified unique peptides, while 94.1% were labeled by ICPL. After statistical analysis, it was possible to quantify 309 (ICPL) and 321 (iTRAQ) proteins, from which 95 are specific to ICPL, 107 to iTRAQ, and 214 common to both labeling strategies. We noted that the iTRAQ quantification could be influenced by the tag. Even though the efficiency of the iTRAQ and ICPL in protein quantification depends on several parameters, both labeling methods were able to successfully quantify proteins present in the endosperm of castor bean during seed development and, when combined, increase the number of quantified proteins.  相似文献   
70.
NAD(P)H:H2 pathways are theoretically predicted to reach equilibrium at very low partial headspace H2 pressure. An evaluation of the directionality of such near‐equilibrium pathways in vivo, using a defined experimental system, is therefore important in order to determine its potential for application. Many anaerobic microorganisms have evolved NAD(P)H:H2 pathways; however, they are either not genetically tractable, and/or contain multiple H2 synthesis/consumption pathways linked with other more thermodynamically favourable substrates, such as pyruvate. We therefore constructed a synthetic ferredoxin‐dependent NAD(P)H:H2 pathway model system in Escherichia coli BL21(DE3) and experimentally evaluated the thermodynamic limitations of nucleotide pyridine‐dependent H2 synthesis under closed batch conditions. NADPH‐dependent H2 accumulation was observed with a maximum partial H2 pressure equivalent to a biochemically effective intracellular NADPH/NADP+ ratio of 13:1. The molar yield of the NADPH:H2 pathway was restricted by thermodynamic limitations as it was strongly dependent on the headspace : liquid ratio of the culture vessels. When the substrate specificity was extended to NADH, only the reverse pathway directionality, H2 consumption, was observed above a partial H2 pressure of 40 Pa. Substitution of NADH with NADPH or other intermediates, as the main electron acceptor/donor of glucose catabolism and precursor of H2, is more likely to be applicable for H2 production.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号