首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   372篇
  免费   13篇
  2023年   2篇
  2022年   1篇
  2021年   4篇
  2020年   4篇
  2019年   3篇
  2018年   5篇
  2017年   4篇
  2016年   6篇
  2015年   14篇
  2014年   14篇
  2013年   20篇
  2012年   29篇
  2011年   30篇
  2010年   18篇
  2009年   18篇
  2008年   23篇
  2007年   26篇
  2006年   24篇
  2005年   25篇
  2004年   26篇
  2003年   27篇
  2002年   21篇
  2001年   2篇
  1999年   2篇
  1998年   2篇
  1997年   2篇
  1996年   5篇
  1995年   2篇
  1994年   4篇
  1993年   4篇
  1992年   3篇
  1991年   1篇
  1990年   2篇
  1989年   1篇
  1988年   2篇
  1986年   2篇
  1984年   1篇
  1982年   3篇
  1981年   1篇
  1980年   1篇
  1979年   1篇
排序方式: 共有385条查询结果,搜索用时 15 毫秒
131.
Spike timing dependent plasticity (STDP) is a synaptic learning rule where the relative timing between the presynaptic and postsynaptic action potentials determines the sign and strength of synaptic plasticity. In its basic form STDP has an asymmetric form which incorporates both persistent increases and persistent decreases in synaptic strength. The basic form of STDP, however, is not a fixed property and depends on the dendritic location. An asymmetric curve is observed in the distal dendrites, whereas a symmetrical one is observed in the proximal ones. A recent computational study has shown that the transition from the asymmetry to symmetry is due to inhibition under certain conditions. Synapses have also been observed to be unreliable at generating plasticity when excitatory postsynaptic potentials and single spikes are paired at low frequencies. Bursts of spikes, however, are reliably signaled because transmitter release is facilitated. This article presents a two-compartment model of the CA1 pyramidal cell. The model is neurophysiologically plausible with its dynamics resulting from the interplay of many ionic and synaptic currents. Plasticity is measured by a deterministic Ca2+ dynamics model which measures the instantaneous calcium level and its time course in the dendrite and change the strength of the synapse accordingly. The model is validated to match the asymmetrical form of STDP from the pairing of a presynaptic (dendritic) and postsynaptic (somatic) spikes as observed experimentally. With the parameter set unchanged the model investigates how pairing of bursts with single spikes and bursts in the presence or absence of inhibition shapes the STDP curve. The model predicts that inhibition strength and frequency are not the only factors of the asymmetry-to-symmetry switch of the STDP curve. Burst interspike interval is another factor. This study is an important first step towards understanding how STDP is affected under natural firing patterns in vivo.  相似文献   
132.
The p21-activated kinase (PAK) family regulate a multitude of cellular processes, including actin cytoskeleton remodelling. Numerous bacterial pathogens usurp host signalling pathways that regulate actin reorganisation in order to promote Infection. Salmonella and pathogenic Escherichia coli drive actin-dependent forced uptake and intimate attachment respectively. We demonstrate that the pathogen-driven generation of both these distinct actin structures relies on the recruitment and activation of PAK. We show that the PAK kinase domain is dispensable for this actin remodelling, which instead requires the GTPase-binding CRIB and the central poly-proline rich region. PAK interacts with and inhibits the guanine nucleotide exchange factor β-PIX, preventing it from exerting a negative effect on cytoskeleton reorganisation. This kinase-independent function of PAK may be usurped by other pathogens that modify host cytoskeleton signalling and helps us better understand how PAK functions in normal and diseased eukaryotic cells.  相似文献   
133.
Apolipoprotein E4 (apoE4) is a risk factor for Alzheimer's disease and has been associated with a variety of neuropathological processes. ApoE4 C-terminally truncated forms have been found in brains of Alzheimer's disease patients. Structural rearrangements in apoE4 are known to be key to its physiological functions. To understand the effect of C-terminal truncations on apoE4 lipid-free structure, we produced a series of recombinant apoE4 forms with progressive C-terminal deletions between residues 166 and 299. Circular dichroism measurements show a dramatic loss in helicity upon removal of the last 40 C-terminal residues, whereas further truncations of residues 203-259 lead to recovery of helical content. Further deletion of residues 186-202 leads to a small increase in helical content. Thermal denaturation indicated that removal of residues 260-299 leads to an increase in melting temperature but truncations down to residue 186 did not further affect the melting temperature. The progressive C-terminal truncations, however, gradually increased the cooperativity of thermal unfolding. Chemical denaturation of the apoE4 forms revealed a two-step process with a clear intermediate stage that is progressively lost as the C-terminus is truncated down to residue 230. Hydrophobic fluorescent probe binding suggested that regions 260-299 and 186-202 contain hydrophobic sites, the former being solvent accessible in the wild-type molecule and the latter being accessible only upon truncation. Taken together, our results show an important but complex role of apoE4 C-terminal segments in secondary structure stability and unfolding and suggest that interactions mediated by the C-terminal segments are important for the structural integrity and conformational changes of apoE4.  相似文献   
134.
Mechanical properties of living cells can be determined using atomic force microscopy (AFM). In this study, a novel analysis was developed to determine the mechanical properties of adherent monolayers of pulmonary microvascular endothelial cells (ECs) using AFM and finite element modeling, which considers both the finite thickness of ECs and their nonlinear elastic properties, as well as the large strain induced by AFM. Comparison of this model with the more traditional Hertzian model, which assumes linear elastic behavior, small strains, and infinite cell thickness, suggests that the new analysis can predict the mechanical response of ECs during AFM indentation better than Hertz's model, especially when using force-displacement data obtained from large indentations (>100 nm). The shear moduli and distensibility of ECs were greater when using small indentations (<100 nm) compared to large indentations (>100 nm). Tumor necrosis factor-α induced changes in the mechanical properties of ECs, which included a decrease in the average shear moduli that occurred in all regions of the ECs and an increase in distensibility in the central regions when measured using small indentations. These changes can be modeled as changes in a chain network structure within the ECs.  相似文献   
135.
136.
The enteric nervous system (ENS) derives from migratory neural crest cells that colonize the developing gut tube, giving rise to an integrated network of neurons and glial cells, which together regulate important aspects of gut function, including coordinating the smooth muscle contractions of the gut wall. The absence of enteric neurons in portions of the gut (aganglionosis) is the defining feature of Hirschsprung’s disease (HSCR) and has been replicated in a number of mouse models. Mutations in the RET tyrosine kinase account for over half of familial cases of HSCR and mice mutant for Ret exhibit aganglionosis. RET exists in two main isoforms, RET9 and RET51 and studies in mouse have shown that RET9 is sufficient to allow normal development of the ENS. In the last several years, zebrafish has emerged as a model of vertebrate ENS development, having been supported by a number of demonstrations of conservation of gene function between zebrafish, mouse and human. In this study we further analyse the potential similarities and differences between ENS development in zebrafish, mouse and human. We demonstrate that zebrafish Ret is required in a dose-dependent manner to regulate colonization of the gut by neural crest derivatives, as in human. Additionally, we show that as in mouse and human, zebrafish ret is produced as two isoforms, ret9 and ret51. Moreover, we show that, as in mouse, the Ret9 isoform is sufficient to support colonization of the gut by enteric neurons. Finally, we identify zebrafish orthologues of genes previously identified to be expressed in the mouse ENS and demonstrate that these genes are expressed in the developing zebrafish ENS, thereby identifying useful ENS markers in this model organism. These studies reveal that the similarities between gene expression and gene function across vertebrate species is more extensive than previously appreciated, thus supporting the use of zebrafish as a general model for vertebrate ENS development and the use of zebrafish genetic screens as a way to identify candidate genes mutated in HSCR cases.  相似文献   
137.
Bacterial pathogens have evolved a specialized type III secretion system (T3SS) to translocate virulence effector proteins directly into eukaryotic target cells. Salmonellae deploy effectors that trigger localized actin reorganization to force their own entry into non-phagocytic host cells. Six effectors (SipC, SipA, SopE/2, SopB, SptP) can individually manipulate actin dynamics at the plasma membrane, which acts as a 'signaling hub' during Salmonella invasion. The extent of crosstalk between these spatially coincident effectors remains unknown. Here we describe trans and cisbinary entry effector interplay (BENEFIT) screens that systematically examine functional associations between effectors following their delivery into the host cell. The results reveal extensive ordered synergistic and antagonistic relationships and their relative potency, and illuminate an unexpectedly sophisticated signaling network evolved through longstanding pathogen-host interaction.  相似文献   
138.
Third Harmonic Generation (THG) microscopy as a non‐invasive, label free imaging methodology, allows linkage of lipid profiles with various breast cancer cells. The collected THG signal arise mostly from the lipid droplets and the membrane lipid bilayer. Quantification of THG signal can accurately distinguish HER2‐positive cells. Further analysis using Fourier transform infrared (FTIR) spectra reveals cancer‐specific profiles, correlating lipid raft‐corresponding spectra to THG signal, associating thus THG to chemical information.

THG imaging of a cancer cell.  相似文献   

139.
Cellular senescence constitutes a generally irreversible proliferation barrier, accompanied by macromolecular damage and metabolic rewiring. Several senescence types have been identified based on the initiating stimulus, such as replicative (RS), stress-induced (SIS) and oncogene-induced senescence (OIS). These senescence subtypes are heterogeneous and often develop subset-specific phenotypes. Reduced protein synthesis is considered a senescence hallmark, but whether this trait pertains to various senescence subtypes and if distinct molecular mechanisms are involved remain largely unknown. Here, we analyze large published or experimentally produced RNA-seq and Ribo-seq datasets to determine whether major translation-regulating entities such as ribosome stalling, the presence of uORFs/dORFs and IRES elements may differentially contribute to translation deficiency in senescence subsets. We show that translation-regulating mechanisms may not be directly relevant to RS, however uORFs are significantly enriched in SIS. Interestingly, ribosome stalling, uORF/dORF patterns and IRES elements comprise predominant mechanisms upon OIS, strongly correlating with Notch pathway activation. Our study provides for the first time evidence that major translation dysregulation mechanisms/patterns occur during cellular senescence, but at different rates depending on the stimulus type. The degree at which those mechanisms accumulate directly correlates with translation deficiency levels. Our thorough analysis contributes to elucidating crucial and so far unknown differences in the translation machinery between senescence subsets.  相似文献   
140.
A defense mechanism in the cuticle of developing C. capitata was demonstrated using an in vitro system consisting of isolated cuticular tyrosinase from C. capitata, cuticular tyrosinase-free proteins, tyrosine, and E. coli. The simultaneous presence of the above components resulted in the formation of large immobilized E. coli aggregates. By contrast, omission of any of the above components failed to produce such aggregates. In other words, E. coli retained their mobility and viability. The results indicate that certain cuticular proteins are responsible for the nonself-recognition, since they are able to bind to the E. coli surface in vitro, and a reactive tyrosine derivative is generated by the action of cuticular tyrosinase for the immobilization and probably killing of E. coli. Based on these studies the most likely explanation for the nonself-recognition and immobilization and/or killing of bacteria is the production of E. coli-protein complexes and their crosslinking through quinone intermediate. © 1993 Wiley-Liss, Inc.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号