首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   249篇
  免费   13篇
  2022年   5篇
  2020年   7篇
  2019年   1篇
  2018年   2篇
  2017年   3篇
  2015年   4篇
  2014年   10篇
  2013年   12篇
  2012年   8篇
  2011年   17篇
  2010年   11篇
  2009年   7篇
  2008年   18篇
  2007年   16篇
  2006年   12篇
  2005年   6篇
  2004年   10篇
  2003年   3篇
  2002年   8篇
  2001年   6篇
  2000年   9篇
  1999年   11篇
  1998年   3篇
  1997年   1篇
  1996年   2篇
  1995年   1篇
  1994年   1篇
  1992年   5篇
  1991年   8篇
  1990年   5篇
  1989年   7篇
  1988年   3篇
  1987年   3篇
  1986年   5篇
  1985年   1篇
  1984年   1篇
  1983年   2篇
  1981年   3篇
  1980年   1篇
  1976年   1篇
  1975年   1篇
  1974年   2篇
  1973年   1篇
  1972年   2篇
  1971年   2篇
  1970年   3篇
  1969年   3篇
  1968年   3篇
  1967年   4篇
  1966年   1篇
排序方式: 共有262条查询结果,搜索用时 15 毫秒
51.
The reduction of adrenal ferredoxin (adrenodoxin) at low temperatures was investigated in order to separate local modifications of the active centre of the protein on its reduction, from the conformational transition which seems to accompany the change of the redox state of the irons; The ESR spectra of the states of the protein, where the reduced active centre is to be found by the "oxidized" conformation of the apoprotein, were obtained. The transition from the states of the protein to the state which occurs on its chemical reduction at room temperature was also investigated. The results of the work support the view that conformational changes in proteins (enzymes) which take place while they are functioning proceed after modifications of the active centres (change of the redox state, adsorption of a substrate, etc.), and are essentially caused by them. Adrenal ferredoxin was the third subject in our studies of the intermediate states of proteins which appear after reduction of their active centres by means of electrons trapped in water-ethylene glycol mixtures at the temperature of liquid nitrogen [1, 2]. In the reduced state, the active centre of the protein has an ESR signal with a g-factor of 1.94 [3, 4] which is convenient for our purposes.  相似文献   
52.
We report the nucleotide sequence of a cloned cDNA, pMTS-3, that contains a 1-kb insert corresponding to mouse thymidylate synthase (E.C. 2.1.1.45). The open reading frame of 921 nucleotides from the first AUG to the termination codon specifies a protein with a molecular mass of 34,962 daltons. The predicted amino acid sequence is 90% identical with that of the human enzyme. The mouse sequence also has an extremely high degree of similarity (as much as 55% identity) with prokaryotic thymidylate synthase sequences, indicating that thymidylate synthase is among the most highly conserved proteins studied to date. The similarity is especially pronounced (as much as 80% identity) in the 44-amino-acid region encompassing the binding site for deoxyuridylic acid. The cDNA sequence also suggests that mouse thymidylate synthase mRNA lacks a 3' untranslated region, since the termination codon, UAA, is followed immediately by a poly(A) segment.   相似文献   
53.
54.
In cultured macrophages (J 774 line) a decrease in iron-sulfur centers (ISC) was not observed after 5 min treatment with nitric oxide (NO) (10(-7) M NO/10(7) cells). The content of these centers was measured by electron spin resonance (ESR) spectroscopy at 16-60 K. However, the appearance of a characteristic ESR signal at g(av) = 2.03 indicated the formation of dinitrosyl iron complex (DNIC) in these cells. These findings suggest that loosely bound non-heme iron (free iron) but not iron from ISC is mainly involved in DNIC formation. ISC might release iron for DNIC formation after their destruction induced by the products of NO oxidation (NO2, N2O3, etc).  相似文献   
55.
Some present-day concepts on the origin and functional activities of dinitrosyl iron complexes (DNIC) with thiolate ligands are considered. Nitric oxide (NO) including to DNIC increases its stability and ensures effective targeting of NO to organs and tissues. DNIC have a square–planar structure; unpaired electron is localized on the dz2 orbital of the d7 iron atom. The formula of DNIC appears as {(RS?)2Fe+(NO+)2….(?SR)2}?; electron spin is S = 1/2. Conversion of an originally diamagnetic group, Fe2+(NO)2 with electron configuration d8, into a paramagnetic Fe+(NO+)2 group is a result of disproportionation of NO ligands and substitution of newly generated NO? for NO. The nitrosonium ions present in DNIC impart to them high nitrosylating activity, e.g., ability to induce S-nitrosylation of thiols. The ability of S-nitrosothiols to form DNIC in a direct reaction with bivalent iron is a prerequisite to effective mutual conversions of DNIC and S-nitrosothiols. In this work, I consider some mechanisms of destructive effects of low-molecular DNIC on active centers of iron–sulfur proteins, ability of DNIC to express certain genes, to activate guanylate cyclase, to exert hypotensive, vasodilator effects, to inhibit platelet aggregation, to accelerate wound healing and to produce potent erective action. Recently a stabilized powder-like polymeric composition based on dimeric glutathione DNIC the water-soluble polymer in which was used as a filling agent was designed. The advantages of this stable DNIC-glutathione preparation include their ability to retain their physico-chemical and functional activities within at least one year. At present, the preparation undergo testing as a base for the design of a wide variety of broad-spectrum drugs.  相似文献   
56.
We studied the biological activity, stability and interaction of dinitrosyl-iron(II)-L-cysteine with vascular tissue. Dinitrosyl-iron(II)-L-cysteine was a potent activator of purified soluble guanylyl cyclase (EC50 10 nM with and 100 nM without superoxide dismutase) and relaxed noradrenaline-precontracted segments of endothelium-denuded rabbit femoral artery (EC50 10 nM superoxide dismutase). Pre-incubation (5 min; 310 K) of endothelium-denuded rabbit aortic segments with dinitrosyl-iron(II)-L-cysteine (0.036-3.6 mM) resulted in a concentration-dependent formation of a dinitrosyl-iron(II) complex with protein thiol groups, as detected by ESR spectroscopy. While the complex with proteins was stable for 2 h at 310 K, dinitrosyl-iron(II)-L-cysteine in aqueous solution (36-360 microM) decomposed completely within 15 min, as indicated by disappearance of its isotropic ESR signal at gav = 2.03 (293 K). Aortic segments pre-incubated with dinitrosyl-iron(II)-L-cysteine released a labile vasodilating and guanylyl cyclase activating factor. Perfusion of these segments with N-acetyl-L-cysteine resulted in the generation of a low molecular weight dinitrosyl-iron(II)-dithiolate from the dinitrosyl-iron(II) complex with proteins, as revealed by the shape change of the ESR signal at 293 K. The low molecular weight dinitrosyl-iron(II)-dithiolate accounted for an enhanced guanylyl cyclase activation and vasodilation induced by the aortic effluent. We conclude that nitric oxide (NO) produced by, or acting on vascular cells can be stabilized and stored as a dinitrosyl-iron(II) complex with protein thiols, and can be released from cells in the form of a low molecular weight dinitrosyl-iron(II)-dithiolate by intra- and extracellular thiols.  相似文献   
57.
Formation in mouse, rat and man's blood of iron nitrosyl complexes with pair thiol groups of proteins (complexes 2.03) was shown by ESR method. This formation was initiated by the introduction in blood in vitro or in vivo of low molecular dinitrosyl complexes of iron with phosphate, thiosulphate, cysteine or reduced gluthatione. Three forms of these complexes were found. They were characterized by ESR signals with rhombic or axial symmetry of g-factor tensor. These forms pass into one another under the effect of a number of thiol-containing compounds or at blood freezing. The life time of the complexes 2.03 in the blood in vivo is several hours.  相似文献   
58.
It has been shown that nitroprusside ions incorporated into bilayer liposomes may be used as a label to form an opinion as to the liposome intactness in the blood and distribution in animal organ tissues in vivo.  相似文献   
59.
60.
Vanin  A. F.  Mikoyan  V. D.  Tkachev  N. A. 《Biophysics》2022,67(6):847-855
Biophysics - Spectral methods have been applied to demonstrate the complete decomposition of the binuclear dinitrosyl iron complex with glutathione after the addition of a 100-fold excess of...  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号