首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1057篇
  免费   90篇
  2023年   5篇
  2022年   7篇
  2021年   25篇
  2020年   13篇
  2019年   23篇
  2018年   26篇
  2017年   24篇
  2016年   29篇
  2015年   43篇
  2014年   58篇
  2013年   72篇
  2012年   64篇
  2011年   81篇
  2010年   39篇
  2009年   53篇
  2008年   65篇
  2007年   68篇
  2006年   71篇
  2005年   67篇
  2004年   52篇
  2003年   51篇
  2002年   69篇
  2001年   10篇
  2000年   5篇
  1999年   16篇
  1998年   10篇
  1997年   13篇
  1996年   11篇
  1995年   8篇
  1994年   6篇
  1993年   6篇
  1992年   5篇
  1991年   3篇
  1990年   3篇
  1988年   4篇
  1987年   4篇
  1986年   3篇
  1985年   4篇
  1983年   5篇
  1982年   4篇
  1981年   2篇
  1978年   3篇
  1975年   2篇
  1973年   1篇
  1972年   2篇
  1969年   1篇
  1968年   1篇
  1967年   3篇
  1966年   2篇
  1965年   1篇
排序方式: 共有1147条查询结果,搜索用时 15 毫秒
131.
Cysteine (Cys) is an enigmatic amino acid residue. Although one of the least abundant, it often occurs in the functional sites of proteins. Whereas free Cys is a polar amino acid, Cys in proteins is often buried, and its classification on the hydrophobicity scale is ambiguous. We hypothesized that the deviation of Cys residues from the properties of a free amino acid is due to their reactivity and addressed this possibility by examining Cys in large protein structure data sets. Compared to other amino acids, Cys was characterized by the most extreme conservation pattern, with the majority of Cys being either highly conserved or poorly conserved. In addition, clustering of Cys with another Cys residue was associated with high conservation, whereas exposure of Cys on protein surfaces was associated with low conservation. Moreover, although clustered Cys behaved as polar residues, isolated Cys was the most buried residue of all, in disagreement with known chemical properties of Cys. Thus, the anomalous hydrophobic behavior and conservation pattern of Cys can be explained by elimination of isolated Cys from protein surfaces during evolution and by clustering of other Cys residues. These findings indicate that Cys abundance is governed by Cys function in proteins rather than by the sheer chemical-physical properties of free amino acids, and suggest that a high tendency of Cys to be functionally active can considerably limit its abundance on protein surfaces.  相似文献   
132.
The synthesis, crystal structure and magnetic properties of manganese(III) binuclear complexes [MnIII2(L-3Н)2(CH3ОH)4]·2CH3ОH (1) and [MnIII2(L-3Н)2(Py)4]·2Py (2) (L = 3-[(1E)-N-hydroxyethanimidoyl]-4-methyl-1H-pyrazole-5-carboxylic acid) are reported. The ligand contains two distinct donor compartments formed by the pyrazolate-N and the oxime or the carboxylic groups. The complexes were characterized by X-ray single crystal diffraction, revealing that both 1 and 2 consist of dinuclear units in which the two metal ions are linked by double pyrazolate bridges with a planar {Mn2N4} core. Cryomagnetic measurements show antiferromagnetic interaction with g = 1.99, J = −3.6 cm−1, Θ = −2.02 K for 1 and g = 2.00, J = −3.7 cm−1, Θ = 1.43 K for 2.  相似文献   
133.
The first evidence of multi-component complexes formed by myeloperoxidase (MPO), ceruloplasmin (CP), and very low/low density lipoproteins (VLDL/LDL) obtained by electrophoresis, gel filtration, and photon-correlation spectroscopy (PCS) is presented in this paper. Complexes were observed when isolated MPO, CP, and VLDL/LDL were mixed and/or when MPO was added to the blood plasma. Complex LDL–MPO–CP was detected in 44 of 100 plasma samples taken from patients with atherosclerosis, and 33 of 44 samples also contained the VLDL–MPO–CP complex. MPO concentration in these patients’ plasma exceeded 800 ng/ml. Interaction of MPO with high density lipoproteins (HDL) was not revealed, as well as binding of CP to lipoproteins in the absence of MPO. Adding antibodies against apoB-100 to VLDL–MPO–CP and LDL–MPO–CP complexes results in release of lipoproteins. Using PCS the diameters of complexes under study were evaluated. By comparing concentrations of the components in complexes formed by MPO, CP, and lipoproteins their stoichiometry was assessed as 2VLDL:1MPO:2CP and 1LDL:1MPO:2CP. Lipoproteins affected the inhibition of MPO peroxidase activity by CP. The affinity of lipoproteins to MPO–CP complex was assessed using apparent dissociation constants determined as ~0.3 nM for VLDL and ~0.14 nM for LDL.  相似文献   
134.
Shin RM  Tsvetkov E  Bolshakov VY 《Neuron》2006,52(5):883-896
Input-specific long-term potentiation (LTP) in afferent inputs to the amygdala serves an essential function in the acquisition of fear memory. Factors underlying input specificity of synaptic modifications implicated in information transfer in fear conditioning pathways remain unclear. Here we show that the strength of naive synapses in two auditory inputs converging on a single neuron in the lateral nucleus of the amygdala (LA) is only modified when a postsynaptic action potential closely follows a synaptic response. The stronger inhibitory drive in thalamic pathway, as compared with cortical input, hampers the induction of LTP at thalamo-amygdala synapses, contributing to the spatial specificity of LTP in convergent inputs. These results indicate that spike timing-dependent synaptic plasticity in afferent projections to the LA is both temporarily and spatially asymmetric, thus providing a mechanism for the conditioned stimulus discrimination during fear behavior.  相似文献   
135.
136.
The cloverleaf structure in the 5'-untranslated region of enterovirus RNA that regulates viral RNA replication contains an evolutionarily conserved YNMG tetraloop closed by a Y-G base pair. This loop is believed to interact specifically with the viral protease 3C. To further characterize the specificity of this interaction, the tetraloop and two flanking base pairs of the poliovirus RNA were randomized, and viable viral clones were obtained using in vivo SELEX. Among many different mutants with the canonical YNMG sequences to be described elsewhere, a large-plaque-forming clone contained a deviating uGCUAg sequence. The NMR structure of a small hairpin capped with uGCUAg that we present here shows that the GCUA tetraloop adopts a novel fold, which is highly similar to that of the YNMG tetraloop with common stacking properties and hydrogen-bond interactions including an unusual syn conformation of the adenosine. Thermodynamic studies show moderate stabilities of hairpins with canonical YNMG and the novel GCUA loops, which, together with the similarity of spatial structures, illustrates that the tetraloop structure itself is crucial for the RNA-protein interaction required for the viral replication. A re-evaluation of the ribosomal secondary structure database reveals a hairpin containing a GCUA loop, which covaries with YNMG and is involved in a tertiary interaction, and in the 50S ribosomal subunit from Haloarcula marismortui the structurally comparable apex of stem-loop 35a is a recognition site for protein L2. These observations show a more general occurrence and importance of the so-far unrecognized GYYA hairpin loops.  相似文献   
137.
138.
139.
Selenium has significant health benefits, including potent cancer prevention activity and roles in immune function and the male reproductive system. Selenium-containing proteins, which incorporate this essential micronutrient as selenocysteine, are proposed to mediate the positive effects of dietary selenium. Presented here are the solution NMR structures of the selenoprotein SelM and an ortholog of the selenoprotein Sep15. These data reveal that Sep15 and SelM are structural homologs that establish a new thioredoxin-like protein family. The location of the active-site redox motifs within the fold together with the observed localized conformational changes after thiol-disulfide exchange and measured redox potential indicate that they have redox activity. In mammals, Sep15 expression is regulated by dietary selenium, and either decreased or increased expression of this selenoprotein alters redox homeostasis. A physiological role for Sep15 and SelM as thiol-disulfide oxidoreductases and their contribution to the quality control pathways of the endoplasmic reticulum are discussed.  相似文献   
140.
Cytochrome P450cam (P450cam) is the terminal monooxygenase in a three-component camphor-hydroxylating system from Pseudomonas putida. The reaction cycle requires two distinct electron transfer (ET) processes from the [2Fe-2S] containing putidaredoxin (Pdx) to P450cam. Even though the mechanism of interaction and ET between the two proteins has been under investigation for over 30 years, the second reductive step and the effector role of Pdx are not fully understood. We utilized mutagenesis, kinetic, and computer modeling approaches to better understand differences between the two Pdx-to-P450cam ET events. Our results indicate that interacting residues and the ET pathways in the complexes formed between reduced Pdx (Pdx(r)) and the ferric and ferrous dioxygen-bound forms of P450cam (oxy-P450cam) are different. Pdx Asp38 and Trp106 were found to be key players in both reductive steps. Compared to the wild-type Pdx, the D38A, W106A, and delta106 mutants exhibited considerably higher Kd values for ferric P450cam and retained ca. 20% of the first electron transferring ability. In contrast, the binding affinity of the mutants for oxy-P450cam was not substantially altered while the second ET rates were <1%. On the basis of the kinetic and modeling data we conclude that (i) P450cam-Pdx interaction is highly specific in part because it is guided/controlled by the redox state of both partners; (ii) there are alternative ET routes from Pdx(r) to ferric P450cam and a unique pathway to oxy-P450cam involving Asp38; (iii) Pdx Trp106 is a key structural element that couples the second ET event to product formation possibly via its "push" effect on the heme-binding loop.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号