首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   639篇
  免费   50篇
  689篇
  2023年   5篇
  2022年   16篇
  2021年   14篇
  2020年   13篇
  2019年   9篇
  2018年   14篇
  2017年   11篇
  2016年   13篇
  2015年   30篇
  2014年   31篇
  2013年   45篇
  2012年   60篇
  2011年   52篇
  2010年   17篇
  2009年   26篇
  2008年   27篇
  2007年   37篇
  2006年   24篇
  2005年   18篇
  2004年   29篇
  2003年   18篇
  2002年   16篇
  2001年   18篇
  2000年   13篇
  1999年   19篇
  1998年   3篇
  1997年   4篇
  1996年   9篇
  1995年   3篇
  1992年   10篇
  1991年   6篇
  1990年   6篇
  1989年   7篇
  1988年   12篇
  1987年   6篇
  1986年   10篇
  1985年   10篇
  1984年   5篇
  1983年   3篇
  1982年   4篇
  1981年   1篇
  1980年   4篇
  1978年   1篇
  1977年   1篇
  1975年   1篇
  1974年   3篇
  1973年   3篇
  1971年   2篇
排序方式: 共有689条查询结果,搜索用时 0 毫秒
671.
M?ssbauer spectroscopy was used to study the tetraheme cytochrome c3 from Desulfovibrio baculatus (DSM 1743). Samples with different degrees of reduction were prepared using a redoxtitration technique. In the reduced cytochrome c3, all four hemes are reduced and exhibit diamagnetic M?ssbauer spectra typical for low-spin ferrous hemes (S = 0). In the oxidized protein, the hemes are low-spin ferric (S = 1/2) and exhibit overlapping magnetic M?ssbauer spectra. A method of differential spectroscopy was applied to deconvolute the four overlapping heme spectra and a crystal-field model was used for data analysis. Characteristic M?ssbauer spectral components for each heme group are obtained. Hyperfine and crystal-field parameters for all four hemes are determined from these deconvoluted spectra.  相似文献   
672.
  1. The North American Great Plains contains thousands of lakes that vary in salinity from freshwater to hypersaline. Paleolimnological studies show that salinity levels in these lakes are tightly linked with climate, and current projections point to a more arid future in the region due to natural and anthropogenic climate change, potentially influencing lake salinity.
  2. Many zooplankton species are sensitive to changes in salinity, and their position near the base of the aquatic food web makes it important to understand how they might respond to increasing salinity levels. Zooplankton communities in lakes with rising salinity levels may exhibit changes in structure, including a shift toward more salinity-tolerant species and a reduction in abundance, species richness, and diversity. However, it is possible that dispersal of zooplankton among lakes could mitigate such community changes when migrant populations replace sensitive zooplankton with those that are locally adapted to higher salinities.
  3. To test if dispersal could reduce salinity-induced changes in zooplankton communities, we ran a field enclosure experiment at a freshwater lake in southern Saskatchewan where we manipulated salinity levels and zooplankton dispersal. We evaluated how salinity and dispersal influenced species identities and relative abundances (community structure) using multivariate statistics and comparing taxonomic and functional compositions among the different treatments (richness, diversity, and evenness).
  4. We found that increasing salinity levels in our enclosures above that in our study lake resulted in lower zooplankton abundances and species richness levels, primarily due to the loss of cladoceran species. However, patterns in our multivariate analyses suggested that cladocerans were maintained in enclosures with salinity levels of 2.5 and 5.0 g/L when those enclosures received immigration from nearby lakes.
  5. In contrast, our univariate analyses failed to find evidence that immigration affected community structure (richness, diversity, evenness). The lack of significant statistical differences could suggest that dispersal does not have an effect, or it may have been a problem with statistical power, as a power analysis suggested that fairly large effect sizes would have been required to achieve statistical significance.
  6. Based on our results, we were unable to reach a definitive conclusion on the role that dispersal might play in buffering zooplankton communities against salinity-driven changes. However, our study provides two important insights for planning future work. First, our power analyses indicated that more replication may be needed given the variability among our experimental enclosures. Second, the patterns in our multivariate analyses suggested that cladocerans could be maintained in lakes undergoing salinity increases if they receive immigration from surrounding lakes with higher salinities. Future work examining how inter- and intraspecific salinity tolerance varies across lakes with a gradient of salinities would be helpful for understanding the role that dispersal might play in buffering against salinity-driven losses of cladoceran zooplankton.
  相似文献   
673.
674.
675.
In contrast to hog kidney D-amino acid oxidase, the v vs s plots of D-amino acid oxidase in homogenized rat kidney did not have the form of a rectangular hyperbola, and showed an apparent negative cooperativity. After subcellular fractionation of rat kidney, both of the oxidases in the supernatant fraction and the peroxisomal fraction showed Michaelis-Menten type kinetics. The Km values for D-alanine and D-proline of the peroxisomal fraction were significantly lower than those of the supernatant fraction. The partially purified enzyme from the peroxisomal fraction showed the same kinetic properties as the supernatant fraction. These facts suggest that the two types of rat kidney D-amino acid oxidase were originally identical and that some interaction between the enzyme and peroxisomes is physiologically important for the function of the enzyme.  相似文献   
676.
677.
The effects of relative humidity and ambient temperature on evaporative heat loss were studied in 12 trials each with a group of 10 gilts with an initial BW of 61.7 kg (58.0–65.5 kg). The ambient temperature inside a respiration chamber was increased by 2 °C d−1 starting at 16 °C and ending at 32 °C. Relative humidity was set at 50%, 65% or 80% and remained constant within each trial. The animals had free access to feed and water. Skin temperature (SkinT), total heat production (HP), evaporative heat loss (EvapH), respiration rate (RR), and wallowing of the animals were recorded. SkinT was lowest at 80% relative humidity (P<0.05). For each degree Celsius rise in SkinT, wallowing increased by 0.19% (P<0.05). For each degree Celsius rise in ambient temperature, total HP decreased by 115 kJ pig−1 d−1 and EvapH increased by 290 kJ pig−1 d−1 (P<0.05). It was concluded that under constant high ambient temperature and relative humidity, the pigs clearly employ respiratory evaporation to lose heat. Wallowing showed the importance of skin EvapH with higher temperatures, especially at high relative humidity. This study shows the importance of evaporative cooling from the skin. The implication is that pigs at high ambient temperatures, especially in combination with a high relative humidity, should be able to wet themselves. For animal welfare and environmental reasons, it is important that they are able to wet their skin.  相似文献   
678.
679.
Regulation of vacuolar pH and its modulation by some microbial species.   总被引:1,自引:0,他引:1  
To survive within the host, pathogens such as Mycobacterium tuberculosis and Helicobacter pylori need to evade the immune response and find a protected niche where they are not exposed to microbicidal effectors. The pH of the microenvironment surrounding the pathogen plays a critical role in dictating the organism's fate. Specifically, the acidic pH of the endocytic organelles and phagosomes not only can affect bacterial growth directly but also promotes a variety of host microbicidal responses. The development of mechanisms to avoid or resist the acidic environment generated by host cells is therefore crucial to the survival of many pathogens. Here we review the processes that underlie the generation of organellar acidification and discuss strategies employed by pathogens to circumvent it, using M. tuberculosis and H. pylori as examples.  相似文献   
680.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号