首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   608篇
  免费   18篇
  2022年   4篇
  2021年   13篇
  2020年   5篇
  2019年   11篇
  2018年   11篇
  2017年   6篇
  2016年   15篇
  2015年   17篇
  2014年   32篇
  2013年   32篇
  2012年   45篇
  2011年   65篇
  2010年   37篇
  2009年   19篇
  2008年   39篇
  2007年   32篇
  2006年   28篇
  2005年   25篇
  2004年   34篇
  2003年   31篇
  2002年   14篇
  2001年   13篇
  2000年   3篇
  1999年   5篇
  1998年   6篇
  1997年   4篇
  1996年   2篇
  1995年   3篇
  1994年   2篇
  1993年   3篇
  1992年   4篇
  1991年   4篇
  1990年   2篇
  1989年   2篇
  1988年   6篇
  1987年   4篇
  1984年   3篇
  1983年   2篇
  1980年   5篇
  1979年   2篇
  1976年   3篇
  1975年   5篇
  1974年   4篇
  1973年   3篇
  1972年   6篇
  1970年   3篇
  1969年   2篇
  1966年   1篇
  1965年   1篇
  1963年   1篇
排序方式: 共有626条查询结果,搜索用时 203 毫秒
71.
The ciliate Tetrahymena thermophila possesses a multitude of cytoskeletal structures whose differentiation is related to the basal bodies the main mediators of the cortical pattern. This investigation deals with immunolocalization using light and electron microscopy of filaments labeled by the monoclonal antibody 12G9, which in other ciliates identifies filaments involved in transmission of cellular polarities and marks cell meridians with the highest morphogenetic potential. In Tetrahymena interphase cells, mAb 12G9 localizes to the sites of basal bodies and to the striated ciliary rootlets, to the apical band of filaments and to the fine fibrillar oral crescent. We followed the sequence of development of these structures during divisional morphogenesis. The labeling of the maternal oral crescent disappears in pre-metaphase cells and reappears during anaphase, concomitantly with differentiation of the new structure in the posterior daughter cell. In the posterior daughter cell, the new apical band originates as small clusters of filaments located at the base of the anterior basal bodies of the apical basal body couplets during early anaphase. The differentiation of the band is completed in the final stages of cytokinesis and in the young post-dividing cell. The maternal band is reorganized earlier, simultaneously with the oral structure.The mAb 12G9 identifies two transient structures present only in dividing cells. One is a medial structure demarcating the two daughter cells during metaphase and anaphase, and defining the new anterior border of the posterior daughter cell. The other is a post-oral meridional filament marking the stomatogenic meridian in postmetaphase cells. Comparative analysis of immunolocalization of transient filaments labeled with mAb12G9 in Tetrahymena and other ciliates indicates that this antibody identifies a protein bound to filamentous structures, which might play a role in relying polarities of cortical domains and could be a part of a mechanism which governs the positioning of cortical organelles in ciliates.  相似文献   
72.
We have elaborated a method which has allowed us to estimate the direction of translocation of orthologs which have changed, during the phylogeny, their positions on chromosome in respect to the leading or lagging role of DNA strands. We have shown that the relative number of translocations which have switched positions of genes from the leading to the lagging DNA strand is lower than the number of translocations which have transferred genes from the lagging strand to the leading strand of prokaryotic genomes. This paradox could be explained by assuming that the stronger mutation pressure and selection after inversion preferentially eliminate genes transferred from the leading to the lagging DNA strand. Received: 12 December 2000 / Accepted: 20 April 2001  相似文献   
73.
cAMP receptor protein (CRP), allosterically activated by cAMP, regulates the expression of several genes in Escherichia coli. As binding of cAMP leads to undefined conformational changes in CRP, we performed a steady-state and time-resolved fluorescence study to show how the binding of the ligand influences the structure and dynamics of the protein. We used CRP mutants containing a single tryptophan residue at position 85 or 13, and fluorescently labeled with 1,5-I-AEDANS attached to Cys178. Binding of cAMP in the CRP-(cAMP)2 complex leads to changes in the Trp13 microenvironment, whereas its binding in the CRP-(cAMP)4 complex alters the surroundings of Trp85. Time-resolved anisotropy measurements indicated that cAMP binding in the CRP-(cAMP)2 complex led to a substantial increase in the rotational mobility of the Trp13 residue. Measurement of fluorescence energy transfer (FRET) between labeled Cys178 and Trp85 showed that the binding of cAMP in the CRP-(cAMP)2 complex caused a substantial increase in FRET efficiency. This indicates a decrease in the distance between the two domains of the protein from 26.6 A in apo-CRP to 18.7 A in the CRP-(cAMP)2 complex. The binding of cAMP in the CRP-(cAMP)4 complex resulted in only a very small increase in FRET efficiency. The average distance between the two domains in CRP-DNA complexes, possessing lac, gal or ICAP sequences, shows an increase, as evidenced by the increase in the average distance between Cys178 and Trp85 to approximately 20 A. The spectral changes observed provide new structural information about the cAMP-induced allosteric activation of the protein.  相似文献   
74.
Patients with chronic renal failure (CRF) often have reduced concentrations of selenium (Se) and lowered activities of glutathione peroxidase (GSH-Px) in blood components. The kidney is a major source of plasma GSH-Px. We measured Se and glutathione levels in blood components and red cell and plasma GSH-Px activities in 58 uremic patients on regular (3 times a week) hemodialysis (HD). The dialyzed patients were divided in 4 subgroups and were supplemented for 3 months with: 1) placebo (bakers yeast), 2) erythropoietin (EPO; 3 times a week with 2,000 U after each HD session), 3) Se-rich yeast (300 μg 3 times a week after each HD), and 4) Se-rich yeast plus EPO in doses as above. The results were compared with those for 25 healthy subjects. The Se concentrations and GSH-Px activities in the blood components of dialyzed uremic patients were significantly lower compared with the control group. Treatment of the HD patients with placebo and EPO only did not change the parameters studied. The treatment with Se as well as with Se and EPO caused an increase in Se levels and red cell GSH-Px activity. Plasma GSH-Px activity, however, increased only slowly or did not change after treatment with Se and with Se plus EPO. In the group treated with Se plus EPO the element concentration in blood components was higher compared with the group supplemented with Se alone. The weak or absence of response in plasma GSH-Px activity to Se supply indicates that the impaired kidney of uremic HD patients has reduced possibilities to synthesize this enzyme.  相似文献   
75.
76.
77.

Background

The standard genetic code (SGC) is a unique set of rules which assign amino acids to codons. Similar amino acids tend to have similar codons indicating that the code evolved to minimize the costs of amino acid replacements in proteins, caused by mutations or translational errors. However, if such optimization in fact occurred, many different properties of amino acids must have been taken into account during the code evolution. Therefore, this problem can be reformulated as a multi-objective optimization task, in which the selection constraints are represented by measures based on various amino acid properties.

Results

To study the optimality of the SGC we applied a multi-objective evolutionary algorithm and we used the representatives of eight clusters, which grouped over 500 indices describing various physicochemical properties of amino acids. Thanks to that we avoided an arbitrary choice of amino acid features as optimization criteria. As a consequence, we were able to conduct a more general study on the properties of the SGC than the ones presented so far in other papers on this topic. We considered two models of the genetic code, one preserving the characteristic codon blocks structure of the SGC and the other without this restriction. The results revealed that the SGC could be significantly improved in terms of error minimization, hereby it is not fully optimized. Its structure differs significantly from the structure of the codes optimized to minimize the costs of amino acid replacements. On the other hand, using newly defined quality measures that placed the SGC in the global space of theoretical genetic codes, we showed that the SGC is definitely closer to the codes that minimize the costs of amino acids replacements than those maximizing them.

Conclusions

The standard genetic code represents most likely only partially optimized systems, which emerged under the influence of many different factors. Our findings can be useful to researchers involved in modifying the genetic code of the living organisms and designing artificial ones.
  相似文献   
78.
79.
In natural conditions, plants growth and development depends on environmental conditions, including the availability of micro- and macroelements in the soil. Nutrient status should thus be examined not by establishing the effects of single nutrient deficiencies on the physiological state of the plant but by combinations of them. Differences in the nutrient content significantly affect the photochemical process of photosynthesis therefore playing a crucial role in plants growth and development. In this work, an attempt was made to find a connection between element content in (i) different soils, (ii) plant leaves, grown on these soils and (iii) changes in selected chlorophyll a fluorescence parameters, in order to find a method for early detection of plant stress resulting from the combination of nutrient status in natural conditions. To achieve this goal, a mathematical procedure was used which combines principal component analysis (a tool for the reduction of data complexity), hierarchical k-means (a classification method) and a machine-learning method—super-organising maps. Differences in the mineral content of soil and plant leaves resulted in functional changes in the photosynthetic machinery that can be measured by chlorophyll a fluorescent signals. Five groups of patterns in the chlorophyll fluorescent parameters were established: the ‘no deficiency’, Fe-specific deficiency, slight, moderate and strong deficiency. Unfavourable development in groups with nutrient deficiency of any kind was reflected by a strong increase in F o and ΔVt 0 and decline in φ Po, φ Eo δ Ro and φ Ro. The strong deficiency group showed the suboptimal development of the photosynthetic machinery, which affects both PSII and PSI. The nutrient-deficient groups also differed in antenna complex organisation. Thus, our work suggests that the chlorophyll fluorescent method combined with machine-learning methods can be highly informative and in some cases, it can replace much more expensive and time-consuming procedures such as chemometric analyses.  相似文献   
80.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号