首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   168篇
  免费   5篇
  2023年   1篇
  2020年   1篇
  2019年   2篇
  2017年   2篇
  2016年   2篇
  2015年   4篇
  2014年   4篇
  2013年   14篇
  2012年   3篇
  2011年   5篇
  2010年   4篇
  2009年   2篇
  2008年   5篇
  2007年   2篇
  2006年   3篇
  2005年   6篇
  2004年   4篇
  2003年   6篇
  2002年   5篇
  2001年   4篇
  2000年   5篇
  1999年   6篇
  1998年   5篇
  1996年   4篇
  1995年   7篇
  1993年   1篇
  1992年   2篇
  1991年   2篇
  1990年   6篇
  1989年   3篇
  1988年   4篇
  1987年   3篇
  1986年   2篇
  1985年   3篇
  1983年   2篇
  1982年   2篇
  1981年   3篇
  1980年   1篇
  1979年   2篇
  1978年   5篇
  1977年   6篇
  1976年   6篇
  1975年   3篇
  1973年   3篇
  1971年   4篇
  1970年   2篇
  1969年   1篇
  1966年   1篇
排序方式: 共有173条查询结果,搜索用时 375 毫秒
1.
Summary The ultrastructural and transmitter development of lumbar sympathetic ganglia was studied in embryonic day-6 through-18 chick embryos. At embryonic day 6, ganglia are populated by two morphologically distinct types of neuronal cells and Schwann cell precursors. The neuronal populations basically comprise a granule-containing cell and a developing principal neuron. Granule-containing cells have, an irregularly shaped or oval nucleus with small clumps of chromatin attached to the inner nuclear membrane and numerous large (up to 300 nm) membrane-limited granules. Developing principal neurons display a more rounded vesicular nucleus with evenly distributed chromatin, prominent nucleoli, more developed areas of Golgi complexes, and rough endoplasmic reticulum and large dense-core vesicles up to 120 nm in diameter. There are granule-containing cells with fewer and smaller granules which still display the nucleus typical for granule-containing cells. These granule-containing cells may develop toward developing principal neurons or the resting state of granule-containing cells found in older ganglia. Both granule-containing cells and developing principal neurons proliferate and can undergo degeneration. At embryonic day 9 there are far more developing principal neurons than granule-containing cells. Most granule-containing cells have very few granules. Mitotic figures and signs of cell degeneration are still apparent. Synapse-like terminals are found on both developing principal neurons and granule-containing cells. Ganglionic development from embryonic day 11 through 18 comprises extensive maturation of developing principal neurons and a numerical decline of granule-containing cells. Some granule-containing cells with very few and small granules still persist at embryonic day 18. The mean catecholamine content per neuron increases from 0.044 femtomol at embryonic day 7 to 0.22 femtomol at embryonic day 15. Concomitantly, there is a more than 6-fold increase in tyrosine hydroxylase activity. Adrenaline has a 14% share in total catecholamines at embryonic day 15. Somatostatin levels are relatively high at embryonic day 7 (1.82 attomol per neuron) and are 10-fold reduced by embryonic day 15. Our results suggest the presence of two morphologically distinct sympathetic neuronal precursors at embryonic day 6: one with a binary choice to become a principal neuron or to die, the other one, a granule-containing cell, which alternatively may develop into a principal neuron, acquire a resting state or die.  相似文献   
2.
Summary An electron microscopic, histoand biochemical study was carried out on the adrenal medulla of newborn and adult guinea-pigs giving special emphasis to small granule-containing (SGC) cells. Adrenaline (A) was the predominating catecholamine (CA) both in newborn (70–90 % of total CA) and adult (85–90%) guinea-pig adrenals. In analogy to the biochemical findings electron microscopy revealed a high predominance of A cells, which contained large granular vesicles with an average diameter of 180 nm. Most noradrenaline (NA) storing cells showed granular vesicles of a considerably smaller average diameter (80 nm) and had a higher nuclear-cytoplasmic ratio. These cells were termed SGC-NA cells. NA cells with large granular vesicles (average diameter 170 nm) were extremely rare. Another type of SGC cells contained granular vesicles with cores of low to medium electron-density (SGC-NA-negative cells). Biochemical determinations made it unlikely that these cells contained predominantly dopamine (DA). SGC cells were scarcely innervated by cholinergic nerves. They formed processes, which were found both in the adrenal cortex and medulla contacting blood vessels including sinusoid capillaries, steroid producing cells of the reticularis and fasciculata zone and processes, which were interpreted to belong to medullary nerve cells.Two types of neurons were present in the guinea-pig adrenal medulla, one resembling the principal neurons in sympathetic ganglia, the other, which, according to its morphology, occupied an intermediate position between principal neurons and SGC cells.In adrenomedullary grafts under the kidney capsule, which were studied three weeks after transplantation, ordinary A cells resembled SGC-NA negative cells with respect to their ultramorphology. Processes of transplanted principal neurons showed uptake of 5-hydroxydopamine and, hence, were considered to be adrenergic. Despite the lack of extrinsic nerves to the transplants, few principal neurons received cholinergic synapses, the origin of which is uncertain to date.Supported by a grant from Deutsche Forschungsgemeinschaft (Un 34/4)Dedicated to Professor H. Leonhardt in honor of his 60th birthday.  相似文献   
3.
Summary The glial fibrillary acidic (GFA) protein and myosin were localized in rat spinal cord and human frontal cortex using specific antibodies against GFA protein from human spinal cord and highly purified smooth myosin from chicken gizzard by means of an indirect immunofluorescence microscopical approach. A strong GFA protein and myosin immunoreactivity was found in astrocytes of the white and grey matter and in the external glial limitans membrane. The very fine branches of astrocytic processes stained with antiGFA protein, but not with anti-myosin. Similar results were obtained with the human frontal cortex, where myosin antibodies failed to reveal the very fine branches of protoplasmic astrocytes.As a whole, staining with the GFA protein antiserum was more crisp than with the myosin antibody.Thanks are due to Professor J.R. Wolff, Max-Planck Institute for Biophysical Chemistry, Göttingen, for stimulating discussions, to Ursula König, Christa Mahlmeister and Renate Steffens for skilful technical assistance, and to Heidi Waluk for the photographic workSupported by grants from Deutsche Forschungsgemeinschaft (Br 634/1, Dr 91/1, Un 34/4, Ste 105/19)Dedicated to Prof. Dr. med. H. Leonhardt on the occasion of his 60. birthday  相似文献   
4.
Summary Studies on isolated adrenal chromaffin cells in primary cultures may be seriously hampered by the presence of non-chromaffin, mainly fibroblast-like cells, which always occur in dissociates of adrenal medullary tissue and often outnumber the chromaffin cells by the end of the first week of culture, when no measures are taken to control their proliferation. The present study offers a new means to inhibit effectively the proliferation of these accessory cells by treating the cultures with dibutyrylic cyclic AMP (dbcAMP, 0.1 or 0.01 mM) and equimolar amounts of the phosphodiesterase inhibitor theophylline. With this treatment cultures of young rat adrenal chromaffin cells remain virtually free of accessory cells for two weeks of culture. Cultures of bovine adrenomedullary cells retain their initial amounts of non-chromaffin cells, which largely depends upon whether the primary cell suspensions have undergone differential plating prior to seeding. Suppression of accessory cell proliferation with dbcAMP and theophylline is partly due to maintaining differentiation of cortical cells, which otherwise dedifferentiate into rapidly dividing fibroblast-like elements. However, a more direct action of dbcAMP on accessory cells in terms of growth control is also conceivable. DbcAMP and theophylline in the doses applied do not impair the viability, ultrastructure and catecholamine-storing capacity of cultured chromaffin cells.  相似文献   
5.
After herbivore feeding, poplar trees produce complex volatile blends containing terpenes, green leaf volatiles, aromatics, and nitrogen-containing compounds such as aldoximes and nitriles. It has been shown recently that volatile aldoximes released from gypsy moth (Lymantria dispar) caterpillar-damaged black poplar (Populus nigra) trees attract parasitoids that are caterpillar enemies. In western balsam poplar (P. trichocarpa), volatile aldoximes are produced by 2 P450 monooxygenases, CYP79D6v3 and CYP79D7v2. A gene fragment with high similarity to CYP79D6/7 was recently shown to be upregulated in herbivore-damaged leaves of P. nigra. In the present study we report the cloning and characterization of this gene, designated as CYP79D6v4. Recombinant CYP79D6v4 was able to convert different amino acids into the corresponding aldoximes, which were also found in the volatile blend of P. nigra. Thus, CYP79D6v4 is most likely involved in herbivore-induced aldoxime formation in black poplar.  相似文献   
6.
This study was conducted to examine the psycho-emotional effects of repeated oral exposure to capsaicin, the principal active component of chili peppers. Each rat received 1 mL of 0.02% capsaicin into its oral cavity daily, and was subjected to behavioural tests following 10 daily administrations of capsaicin. Stereotypy counts and rostral grooming were significantly increased, and caudal grooming decreased, in capsaicin-treated rats during the ambulatory activity test. In elevated plus maze test, not only the time spent in open arms but also the percent arm entry into open arms was reduced in capsaicin-treated rats compared with control rats. In forced swim test, although swimming duration was decreased, struggling increased in the capsaicin group, immobility duration did not differ between the groups. Repeated oral capsaicin did not affect the basal levels of plasma corticosterone; however, the stress-induced elevation of plasma corticosterone was prolonged in capsaicin treated rats. Oral capsaicin exposure significantly increased c-Fos expression not only in the nucleus tractus of solitarius but also in the paraventricular nucleus. Results suggest that repeated oral exposure to capsaicin increases anxiety-like behaviours in rats, and dysfunction of the hypothalamic-pituitary-adrenal axis may play a role in its pathophysiology.  相似文献   
7.

Background:

Vascular growth is a prerequisite for adipose tissue (AT) development and expansion. Some AT cytokines and hormones have effects on vascular development, like vascular endothelial growth factor (VEGF‐A), angiopoietin (ANG‐1), ANG‐2 and angiopoietin‐like protein‐4 (ANGPTL‐4).

Methods:

In this study, the independent and combined effects of diet‐induced weight loss and exercise on AT gene expression and proteins levels of those angiogenic factors were investigated. Seventy‐nine obese males and females were randomized to: 1. Exercise‐only (EXO; 12‐weeks exercise without diet‐restriction), 2. Hypocaloric diet (DIO; 8‐weeks very low energy diet (VLED) + 4‐weeks weight maintenance diet) and 3. Hypocaloric diet and exercise (DEX; 8‐weeks VLED + 4‐weeks weight maintenance diet combined with exercise throughout the 12 weeks). Blood samples and fat biopsies were taken before and after the intervention.

Results:

Weight loss was 3.5 kg in the EXO group and 12.3 kg in the DIO and DEX groups. VEGF‐A protein was non‐significantly reduced in the weight loss groups. ANG‐1 protein levels were significantly reduced 22‐25% after all three interventions (P < 0.01). The ANG‐1/ANG‐2 ratio was also decreased in all three groups (P < 0.05) by 27‐38%. ANGPTL‐4 was increased in the EXO group (15%, P < 0.05) and 9% (P < 0.05) in the DIO group. VEGF‐A, ANG‐1, and ANGPTL‐4 were all expressed in human AT, but only ANGPTL‐4 was influenced by the interventions.

Conclusions:

Our data show that serum VEGF‐A, ANG‐1, ANG‐2, and ANGPTL‐4 levels are influenced by weight changes, indicating the involvement of these factors in the obese state. Moreover, it was found that weight loss generally was associated with a reduced angiogenic activity in the circulation.  相似文献   
8.
Essential role for TrkB receptors in hippocampus-mediated learning   总被引:23,自引:0,他引:23  
Brain-derived neurotrophic factor (BDNF) and its receptor TrkB regulate both short-term synaptic functions and long-term potentiation (LTP) of brain synapses, raising the possibility that BDNF/TrkB may be involved in cognitive functions. We have generated conditionally gene targeted mice in which the knockout of the trkB gene is restricted to the forebrain and occurs only during postnatal development. Adult mutant mice show increasingly impaired learning behavior or inappropriate coping responses when facing complex and/or stressful learning paradigms but succeed in simple passive avoidance learning. Homozygous mutants show impaired LTP at CA1 hippocampal synapses. Interestingly, heterozygotes show a partial but substantial reduction of LTP but appear behaviorally normal. Thus, CA1 LTP may need to be reduced below a certain threshold before behavioral defects become apparent.  相似文献   
9.
10.
This article summarizes and interprets recent data from our laboratories suggesting that transforming growth factor-ss (TGF-ss1, -ss2, -ss3) is essentially required, in vitro and in vivo, for the neurotrophic signaling of glial cell line-derived neurotrophic factor (GDNF). TGF-ss, which is synthesized by and released from neurons, also synergizes with neurotrophins and members of the neurokine and fibroblast growth factor families by increasing their efficacies. However, when applied to purified neuron populations without other factors being added, TGF-ss does not promote survival or differentiation. Together, these data suggest that neither TGF-ss nor GDNF fulfil essential criteria of a typical neurotrophic factor, as e.g. nerve growth factor (NGF). Moreover, the neurotrophic activity of NGF and other classic neurotrophic factors is apparently based, to a significant extent, on their co-operativity with TGF-ss. Mechanisms, by which TGF-ss generates neurotrophic effects and synergizes with other cytokines are beginning to emerge. Recruitment and/or stabilization of receptors and cross-talks at different levels of signal transduction are likely to be implied in generating the neurotrophic potential of the TGF-ss/cytokine synergisms. Together, these data outline a novel role of TGF-ss in a key event of nervous system development, ontogenetic neuron death. Conceptually more important, however, may be the broadening of the neurotrophic factor concept, which now has to imply the possibility that two cytokines, each being ineffective by itself, become neurotrophically active when acting in concert.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号