首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5544篇
  免费   291篇
  国内免费   4篇
  2023年   50篇
  2022年   75篇
  2021年   159篇
  2020年   112篇
  2019年   108篇
  2018年   155篇
  2017年   135篇
  2016年   194篇
  2015年   242篇
  2014年   272篇
  2013年   367篇
  2012年   429篇
  2011年   388篇
  2010年   280篇
  2009年   196篇
  2008年   237篇
  2007年   254篇
  2006年   201篇
  2005年   193篇
  2004年   162篇
  2003年   139篇
  2002年   126篇
  2001年   94篇
  2000年   88篇
  1999年   73篇
  1998年   36篇
  1997年   27篇
  1996年   26篇
  1995年   35篇
  1994年   38篇
  1993年   39篇
  1992年   60篇
  1991年   49篇
  1990年   38篇
  1989年   47篇
  1988年   45篇
  1987年   45篇
  1986年   57篇
  1985年   40篇
  1984年   52篇
  1983年   34篇
  1982年   34篇
  1981年   34篇
  1980年   36篇
  1979年   42篇
  1977年   49篇
  1976年   26篇
  1975年   31篇
  1974年   32篇
  1972年   28篇
排序方式: 共有5839条查询结果,搜索用时 46 毫秒
991.
Crimean-Congo hemorrhagic fever (CCHF) virus is one among the major zoonosis viral diseases that use the Hyalomma ticks as their transmission vector to cause viral infection to the human and mammalian community. The fatality of infectious is high across the world especially in Africa, Asia, Middle East, and Europe. This study regarding codon usage bias of S, M, and L segments of the CCHF virus pertaining to the host Homo sapiens, reveals in-depth information about the evolutionary characteristics of CCHFV. Relative Synonymous Codon Usage (RSCU), Effective number of codons (ENC) were calculated, to determine the codon usage pattern in each segment. Correlation analysis between Codon adaptation index (CAI), GRAVY (Hydrophobicity), AROMO (Aromaticity), and nucleotide composition revealed bias in the codon usage pattern. There was no strong codon bias found among any segments of the CCHF virus, indicating both the factors i.e., natural selection and mutational pressure shapes the codon usage bias.  相似文献   
992.

Objectives

To identify parameters that can be used for the analysis of natural variation in leaf senescence of wheat; and to understand the association between the onset and progression of leaf senescence with N uptake and root traits.

Methods

Chlorophyll content and the proportion of yellow leaves were used as senescence indicators and their relation with other morphological and physiological traits were measured in contrasting early senescing (ES) and late senescing (LS) wheat lines.

Results

There were significant genotype effects on the onset and progress of senescence. The ES lines in which leaf senescence commenced early had significantly lower root biomass and N uptake than LS lines. The strong negative association between the extent of leaf senescence with root biomass and N uptake indicated that the poor root growth induced N limitation caused the early senescence of ES lines.

Conclusions

The leaf senescence development in ES lines was precocious and constitutive as the trait expressed even under optimal growth conditions suggesting they could be useful in understanding the genetic regulation of senescence under different abiotic stress situations. Accelerated leaf senescence in wheat could be a mechanism to compensate for limitations in the root system that tend to restrict nutrient uptake.  相似文献   
993.
994.
The sorbitol-6-phosphate dehydrogenase (S6PDH) is a key enzyme for sorbitol synthesis and plays an important role in the alleviation of salinity stress in plants. Despite the huge significance, the structure and the mode of action of this enzyme are still not known. In the present study, sequence analysis, cloning, expression, activity assays and enzyme kinetics using various substrates (glucose-6-phosphate, sorbitol-6-phosphate and mannose-6-phosphate) were performed to establish the functional role of S6PDH protein from rice (Oryza sativa). For the structural analysis of the protein, a comparative homology model was prepared on the basis of percentage sequence identity and substrate similarity using the crystal structure of human aldose reductase in complex with glucose-6-phosphate and NADP+ (PDB ID: 2ACQ) as a template. Molecular docking was performed for studying the structural details of substrate binding and possible enzyme mechanism. The cloned sequence resulted into an active recombinant protein when expressed into a bacterial expression system. The purified recombinant protein was found to be active with glucose-6-phosphate and sorbitol-6-phosphate; however, activity against mannose-6-phosphate was not found. The K m values for glucose-6-phosphate and sorbitol-6-phosphate were found to be 15.9 ± 0.2 and 7.21 ± 0.5 mM, respectively. A molecular-level analysis of the active site of OsS6PDH provides valuable information about the enzyme mechanism and requisite enantioselectivity for its physiological substrates. Thus, the fundamental studies of structure and function of OsS6PDH could serve as the basis for the future studies of bio-catalytic applications of this enzyme.  相似文献   
995.
The effectiveness of the metal oxide nanoparticles viz. CuO and Fe2O3 as antibacterial agents against multidrug resistant biofilm forming bacteria was evaluated. CuO nanoparticles were also experimented for antibiofilm and time kill assay. The CuO displayed maximum antibacterial activity with zone of inhibition of (22 ± 1) mm against methicillin resistant Staphylococcus aureus (MRSA) followed by Escherichia coli (18 ± 1) mm. The Fe2O3 showed the zone of inhibition against MRSA of (14 ± 1) mm followed by E. coli (12 ± 1) mm. CuO proved to be more toxic than Fe2O3 nanoparticles showing significantly high antibacterial activity and found to possess dose dependent antibiofilm properties.  相似文献   
996.
Recent experiments using expression, immunolocalization, and cell culture approaches have provided leading insights into regulation of luteal angiogenesis by different growth factor systems and its role in the function of corpus luteum (CL) in buffalo. On the contrary, lymphangiogenesis and its regulation in the CL are still poorly understood. The aim of this study was to evaluate the expression and localization of lymphangiogenic factors (vascular endothelial growth factor [VEGF]-C and VEGFD), their receptor (VEGFR3), and lymphatic endothelial marker (LYVE1) in bubaline CL during different stages of the estrous cycle and to investigate functional role of VEGFC and VEGFD in luteal lymphangeogenesis. The mRNA and protein expression of VEGFC, VEGFD, and VEGFR3 was significantly greater in mid and late luteal phases, which correlated well with the expression of LYVE1. The lymphangiogenic factors were localized in luteal cells, exclusively in the cytoplasm. Immunoreactivity of VEGFC was greater during midluteal phase and that of VEGFD was greater during the mid and late luteal phases. Luteal cells were cultured in vitro and treated for different time duration (24, 48, and 72 hours) with VEGFC and VEGFD each at 50, 100, and 150 ng/mL concentration and VEGFC with VEGFD at 100 ng/mL concentration. The temporal increase in LYVE1 mRNA expression was significant (P < 0.05) in VEGFC and VEGFC with VEGFD treatment and no significant change was seen in VEGFD treatment. Thus, it seems likely that VEGFD itself has little role in lymphangiogenesis but along with VEGFC it might have a synergistic effect on VEGFR3 receptors for inducing lymphangiogenesis. In summary, the present study provided evidence that VEGFC and VEGFD, and their receptor VEGFR3, are expressed in bubaline CL and are localized exclusively in the cell cytoplasm, suggesting that these factors have a functional role in lymphangiogenesis of CL in buffalo.  相似文献   
997.
Two central redox enzyme systems exist to reduce eukaryotic P450 enzymes, the P450 oxidoreductase (POR) and the cyt b? reductase-cyt b?. In fungi, limited information is available for the cyt b(5) reductase-cyt b(5) system. Here we characterized the kinetic mechanism of (cyt b?r)-cyt b? redox system from the model white-rot fungus Phanerochaete chrysosporium (Pc) and made a quantitative comparison to the POR system. We determined that Pc-cyt b?r followed a "ping-pong" mechanism and could directly reduce cytochrome c. However, unlike other cyt b? reductases, Pc-cyt b?r lacked the typical ferricyanide reduction activity, a standard for cyt b? reductases. Through co-expression in yeast, we demonstrated that the Pc-cyt b?r-cyt b? complex is capable of transferring electrons to Pc-P450 CYP63A2 for its benzo(a)pyrene monooxygenation activity and that the efficiency was comparable to POR. In fact, both redox systems supported oxidation of an estimated one-third of the added benzo(a)pyrene amount. To our knowledge, this is the first report to indicate that the cyt b?r-cyt b? complex of fungi is capable of transferring electrons to a P450 monooxygenase. Furthermore, this is the first eukaryotic quantitative comparison of the two P450 redox enzyme systems (POR and cyt b?r-cyt b?) in terms of supporting a P450 monooxygenase activity.  相似文献   
998.
Zinc deficiency impairs cellular immunity. Up-regulation of mRNA levels of IFN-γ, IL-12Rβ2, and T-bet are essential for Th1 differentiation. We hypothesized that zinc increases Th1 differentiation via up-regulation of IFN-γ and T-bet expression. To test this hypothesis, we used zinc-deficient and zinc-sufficient HUT-78 cells (a Th0 cell line) under different condition of stimulation in this study. We also used TPEN, a zinc-specific chelator, to decrease the bioavailability of zinc in the cells. We measured intracellular free zinc, cytokines, and the mRNAs of T-bet, IFN-γ, and IL-12Rβ2. In this study, we show that in zinc-sufficient HUT-78 cells, mRNA levels of IFN-γ, IL-12Rβ2, and T-bet in PMA/PHA-stimulated cells were increased in comparison to zinc-deficient cells. Although intracellular free zinc was increased slightly in PMA/PHA-stimulated cells, Con-A-stimulated cells in 5 μM zinc medium showed a greater sustained increase in intracellular free zinc in comparison to cells incubated in 1 μM zinc. The cells pre-incubated with TPEN showed decreased mRNA levels of IFN-γ and T-bet mRNAs in comparison to cells without TPEN incubation. We conclude that stimulation of cells by Con-A via TCR, release intracellular free zinc which functions as a signal molecule for generation of IFN-γ and T-bet, and IL-12Rβ2 mRNAs required for Th1 cell differentiation. These results suggest that zinc increase Th1 cell differentiation by up-regulation of IFN-γ and T-bet, and IL-12Rbβ2 mRNAs.  相似文献   
999.
The serine protease thrombin plays multiple roles in many important physiological processes, especially coagulation, where it functions as both a pro- and anticoagulant. The polyanionic glycosaminoglycan heparin modulates thrombin's activity through binding at exosite II. Sucrose octasulfate (SOS) is often used as a surrogate for heparin, but it is not known whether it is an effective heparin mimic in its interaction with thrombin. We have characterized the interaction of SOS with thrombin in solution and determined a crystal structure of their complex. SOS binds thrombin with a K(d) of ~1.4 μM, comparable to that of the much larger polymeric heparin measured under the same conditions. Nonionic (hydrogen bonding) interactions make a larger contribution to thrombin binding of SOS than to heparin. SOS binding to exosite II inhibits thrombin's catalytic activity with high potency but with low efficacy. Analytical ultracentrifugation shows that bovine and human thrombins are monomers in solution in the presence of SOS, in contrast to their complexes with heparin, which are dimers. In the X-ray crystal structure, two molecules of SOS are bound nonequivalently to exosite II portions of a thrombin dimer, in contrast to the 1:2 stoichiometry of the heparin-thrombin complex, which has a different monomer association mode in the dimer. SOS and heparin binding to exosite II of thrombin differ on both chemical and structural levels and, perhaps most significantly, in thrombin inhibition. These differences may offer paths to the design of more potent exosite II binding, allosteric small molecules as modulators of thrombin function.  相似文献   
1000.
The entry of dengue viruses is mediated by pH triggering in the host cells. Here we have studied the DENV E protein stability and binding of its units at low and normal pH using MD and MM-PB/SA method for the first time. To investigate the role of pH in dissociation of dimeric protein, we have performed a concise study of hydrogen bonding and other interactions between units of dimer at low and normal pH. The Generalized Born calculation connotes that dimeric unit was relatively less stable and less proned for dimerisation at low pH. Our results provide a theoretical verification for previous assumptions of pH triggering mechanism of dengue envelope protein. During the pH alteration, we found a large decrement in salt bridges which were observed at normal pH. We also compared the flexibility of each unit and found that they exhibit different fluctuations during molecular dynamics simulations.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号