首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   99篇
  免费   3篇
  2024年   1篇
  2023年   4篇
  2022年   1篇
  2021年   6篇
  2020年   1篇
  2019年   5篇
  2018年   5篇
  2017年   3篇
  2016年   8篇
  2015年   11篇
  2014年   9篇
  2013年   8篇
  2012年   11篇
  2011年   4篇
  2010年   4篇
  2009年   2篇
  2008年   2篇
  2007年   5篇
  2006年   3篇
  2002年   1篇
  2001年   2篇
  2000年   1篇
  1999年   3篇
  1998年   1篇
  1982年   1篇
排序方式: 共有102条查询结果,搜索用时 761 毫秒
21.
22.
Myzus persicae (M. persicae) is now considered a threat to agricultural crops due to economic losses. Numerous synthetic insecticides applied every year against M. persicae, are reported to be unsafe for environment, humans, and beneficial insects. Furthermore, several species of Myzus have been found to develop resistance due to over application of these insecticides. Therefore, it is required to find some novel insecticide that would be safe for the environment as well as for humans. In the current study, two major pure constituents α-pinene and β-caryophyllene were evaluated for their insecticidal potential against M. persicae using a fumigant toxicity assay. Furthermore, impact of α-pinene and β-caryophyllene on expression of five different genes, e.g., HSP 60, FPPS I, OSD, TOL and ANT responsible for reproduction, dispersion, and growth of M. persicae has also been investigated. To perform fumigant toxicity assay, five different concentrations (3.5, 4, 4.5, 5 and 6 μL L−1) of α-pinene and β-caryophyllene were prepared. Lethal concentration (LC) was calculated, and gene expression studies were executed through qRT PCR at LC30 of α-pinene and β-caryophyllene. Both constituents demonstrated excellent fumigant toxicity effects against M. persicae at all five concentrations. However, α-pinene shows significantly better results (98%) as compared to β-caryophyllene (80%) after 72 h at 6 μL L−1 of dose. The highest upregulation in expression was demonstrated at LC30 dose of α-pinene in five in three out of five genes understudy (TOL, ANT, and FPPS I). Conversely, two genes HSP 60 and OSD demonstrated downregulation at LC30 dose of β-caryophyllene. Conclusively, our results highlighted the promising insecticidal potential of both compounds α-pinene and β-caryophylleneby interfering with the reproduction and development related processes in M. persicae, allowing us to recommend the phytoconstituents under investigation as an ecofriendly alternative to synthetic insecticides.  相似文献   
23.
We have identified a naturally occurring, dominant mutation that causes dwarfism in domestic pigs (Sus scrofa). With a positional candidate gene approach, the dwarf phenotype was shown to be a result of a single amino acid change, G590R, in the α1(X) chain of type X collagen. Type X collagen is a homotrimer of α1(X) chains encoded by the COL10A1 gene, which is expressed in hypertrophic chondrocytes during the process of endochondral ossification. An amino acid substitution at the equivalent position in human type X collagen, G595E, has previously been shown to cause Schmid metaphyseal chondrodysplasia (SMCD), which is a relatively mild skeletal disorder associated with dwarfism and growth plate abnormality. Consistent with the clinical phenotype of SMCD patients, radiological and histological examination of the dwarf pigs revealed metaphyseal chondrodysplasia in the long bones. Yeast-based, two-hybrid protein interaction studies and in vitro assembly experiments demonstrated that the amino acid substitution interfered with the ability of the mutated collagen molecules to engage in trimerization. This work establishes that the chondrodysplastic dwarf pigs by genetic, biochemical, radiological and histological criteria provide a valid animal model of SMCD. Received: 25 May 2000 / Accepted: 25 July 2000  相似文献   
24.
International Journal of Peptide Research and Therapeutics - In the last decade, several studies have reported health beneficial effects of milk derived bioactive peptides in several degenerative...  相似文献   
25.

Objectives

To characterize the CTX-M-15-encoding plasmid in a Klebsiella pneumoniae ST17 strain, responsible for an outbreak at a Norwegian neonatal intensive care unit and subsequent colonization of affected children for up to two years. To identify plasmid-mediated features relevant for the outbreak dynamics, and to investigate the plasmids capability of horizontal transfer, its segregational stability and plasmid-mediated fitness costs.

Methods

Plasmid profiling was performed by S1-nuclease PFGE, PCR-based replicon typing and Southern blot-hybridization. The complete sequence of the CTX-M-15-encoding plasmid was obtained by 454 sequencing. Plasmid self-transferability was investigated by broth- and filter mating, segregational stability was explored by serial passage, and plasmid-conferred fitness costs were examined in pairwise head-to-head competitions and by growth rate comparisons.

Results

CTX-M-15 was encoded by a ~180 kb IncFIIK plasmid in K. pneumoniae ST17. S1-nuclease PFGE profiles of the first and the last CTX-M-15-producing K. pneumoniae isolates, recovered from the four children colonized the longest, suggested that the plasmid was stably maintained during intestinal carriage of up to two years. The DNA sequence of the pKPN3-like plasmid, pKp848CTX, uncovered a Tn3-like antibiotic resistance region and multiple heavy metal- and thermoresistance determinants. Plasmid pKp848CTX could not be transferred to Escherichia coli in vitro and we found no evidence to support horizontal plasmid transfer in vivo. Segregational plasmid loss ranging from 0.83% to 17.5% was demonstrated in evolved populations in vitro, but only minor fitness costs were associated with plasmid-carriage.

Conclusions

Plasmid pKp848CTX encodes phenotypic traits, which may have had an impact on the fitness and survival of the K. pneumoniae ST17 strain in the outbreak setting. The antibiotic resistance plasmid pKp848CTX was stably maintained during two years of intestinal colonization, conferring negligible fitness cost to its host, and thus seem well adapted to its K. pneumoniae host.  相似文献   
26.

Background

Phylogenetic heterogeneity across Pseudomonas genus is complemented by its diverse genome architecture enriched by accessory genetic elements (plasmids, transposons, and integrons) conferring resistance across this genus. Here, we sequenced a stress tolerant genotype i.e. Pseudomonas sp. strain RL isolated from a hexachlorocyclohexane (HCH) contaminated pond (45 mg of total HCH g−1 sediment) and further compared its gene repertoire with 17 reference ecotypes belonging to P. stutzeri, P. mendocina, P. aeruginosa, P. psychrotolerans and P. denitrificans, representing metabolically diverse ecosystems (i.e. marine, clinical, and soil/sludge). Metagenomic data from HCH contaminated pond sediment and similar HCH contaminated sites were further used to analyze the pan-genome dynamics of Pseudomonas genotypes enriched across increasing HCH gradient.

Results

Although strain RL demonstrated clear species demarcation (ANI ≤ 80.03%) from the rest of its phylogenetic relatives, it was found to be closest to P. stutzeri clade which was further complemented functionally. Comparative functional analysis elucidated strain specific enrichment of metabolic pathways like α-linoleic acid degradation and carbazole degradation in Pseudomonas sp. strain RL and P. stutzeri XLDN-R, respectively. Composition based methods (%codon bias and %G + C difference) further highlighted the significance of horizontal gene transfer (HGT) in evolution of nitrogen metabolism, two-component system (TCS) and methionine metabolism across the Pseudomonas genomes used in this study. An intact mobile class-I integron (3,552 bp) with a captured gene cassette encoding for dihydrofolate reductase (dhfra1) was detected in strain RL, distinctly demarcated from other integron harboring species (i.e. P. aeruginosa, P. stutzeri, and P. putida). Mobility of this integron was confirmed by its association with Tnp21-like transposon (95% identity) suggesting stress specific mobilization across HCH contaminated sites. Metagenomics data from pond sediment and recently surveyed HCH adulterated soils revealed the in situ enrichment of integron associated transposase gene (TnpA6100) across increasing HCH contamination (0.7 to 450 mg HCH g−1 of soil).

Conclusions

Unlocking the potential of comparative genomics supplemented with metagenomics, we have attempted to resolve the environment and strain specific demarcations across 18 Pseudomonas gene complements. Pan-genome analyses of these strains indicate at astoundingly diverse metabolic strategies and provide genetic basis for the cosmopolitan existence of this taxon.

Electronic supplementary material

The online version of this article (doi:10.1186/s12864-015-1488-2) contains supplementary material, which is available to authorized users.  相似文献   
27.
Anaphylaxis is a sudden immune reaction against an allergen that can potentially lead to Anaphylactic Shock (AS). This immune reaction is characterized by an increase in Immunoglobulin-E (IgE) type of antibodies that bind with FcεRI receptors on mast cells to release inflammatory mediators. Various intracellular signaling molecules downstream of IgE/ FcεRI axis play a potential role in cytokine, chemokine and eicosanoid secretion as well as degranulation of immune cells causing vasodilation, vascular permeability, and reduction of intravascular volume leading to cardiovascular collapse. Here, we discuss the cellular machinery of anaphylaxis and the de novo paradigm shift in the cellular aspects of AS.  相似文献   
28.
Symbiotic bacteria play vital roles in the survival and health of marine sponges. Sponges harbor rich, diverse and species-specific microbial communities. Symbiotic marine bacteria have increasingly been reported as promising source of bioactive compounds. A culturomics-based study was undertaken to study the diversity of bacteria from marine sponges and their antimicrobial potential. We have collected three sponge samples i.e. Acanthaster carteri, Rhytisma fulvum (soft coral) and Haliclona caerulea from north region (Obhur) of Red Sea, Jeddah Saudi Arabia. Total of 144 bacterial strains were isolated from three marine sponges using culture dependent method. Screening of isolated strains showed only 37 (26%) isolates as antagonists against oomycetes pathogens (P. ultimum and P. capsici). Among 37 antagonistic bacteria, only 19 bacterial strains exhibited antibacterial activity against human pathogens (Methicillin-resistant Staphylococcus aureus (MRSA) ATCC 43300, Pseudomonas aeruginosa ATCC 27853, Escherichia coli ATCC 8739, Enterococcus faecalis ATCC 29212). Four major classes of bacteria i.e γ-Proteobacteria, α-Proteobacteria, Firmicutes and Actinobacteria were recorded from three marine sponges where γ-Proteobacteria was dominant class. One potential bacterial strain Halomonas sp. EA423 was selected for identification of bioactive metabolites using GC and LC-MS analyses. Bioactive compounds Sulfamerazine, Metronidazole-OH and Ibuprofen are detected from culture extract of strain Halomonas sp. EA423. Overall, this study gives insight into composition and diversity of antagonistic bacterial community of marine sponges and coral from Red Sea and presence of active metabolites from potential strain. Our results showed that these diverse and potential bacterial communities further need to be studied to exploit their biotechnological significance.  相似文献   
29.
Ullah N  Lee HY  Naseer MI  Ullah I  Suh JW  Kim MO 《PloS one》2011,6(12):e27093

Background

Exposure to the chemotherapeutic alkylating agent thiotepa during brain development leads to neurological complications arising from neurodegeneration and irreversible damage to the developing central nerve system (CNS). Administration of single dose of thiotepa in 7-d postnatal (P7) rat triggers activation of apoptotic cascade and widespread neuronal death. The present study was aimed to elucidate whether nicotinamide may prevent thiotepa-induced neurodegeneration in the developing rat brain.

Methodology/Principal Findings

Neuronal cell death induced by thiotepa was associated with the induction of Bax, release of cytochrome-c from mitochondria into the cytosol, activation of caspase-3 and cleavage of poly (ADP-ribose) polymerase (PARP-1). Post-treatment of developing rats with nicotinamide suppressed thiotepa-induced upregulation of Bax, reduced cytochrome-c release into the cytosol and reduced expression of activated caspase-3 and cleavage of PARP-1. Cresyl violet staining showed numerous dead cells in the cortex hippocampus and thalamus; post-treatment with nicotinamide reduced the number of dead cells in these brain regions. Terminal deoxynucleotidyl transferase (TdT)-mediated dUTP nick end-labeling (TUNEL) and immunohistochemical analysis of caspase-3 show that thiotepa-induced cell death is apoptotic and that it is inhibited by nicotinamide treatment.

Conclusion

Nicotinamide (Nic) treatment with thiotepa significantly improved neuronal survival and alleviated neuronal cell death in the developing rat. These data demonstrate that nicotinamide shows promise as a therapeutic and neuroprotective agent for the treatment of neurodegenerative disorders in newborns and infants.  相似文献   
30.

Background

To study the molecular characteristics of a long-term, low frequency outbreak of bla KPC-2 in a low prevalence setting involving the hospital environment.

Methodology/Principal Findings

KPC-producing bacteria were screened by selective chromogenic agar and Real-Time PCR. The presence of antibiotic resistance genes was ascribed by PCRs and subsequent sequencing, and the KPC-producing isolates were phylogenetically typed using PFGE and multi-locus sequence typing. Bla KPC-2-plasmids were identified and analysed by S1-nuclease-PFGE hybridization and PCR based replicon typing. A ∼97 kb IncFII plasmid was seen to carry bla KPC-2 in all of the clinical isolates, in one of the isolates recovered from screened patients (1/136), and in the Klebsiella pneumoniae and Enterobacter asburiae isolates recovered from the environment (sinks) in one intensive care unit. The K. pneumoniae strain ST258 was identified in 6 out of 7 patients. An intergenus spread to E. asburiae and an interspecies spread to two different K. pneumoniae clones (ST27 and ST461) of the bla KPC-2 plasmid was discovered. K. pneumoniae ST258 and genetically related E. asburiae strains were found in isolates of both human and environmental origins.

Conclusions/Significance

We document a clonal transmission of the K. pneumoniae ST258 strain, and an intergenus plasmid diffusion of the IncFII plasmid carrying bla KPC-2 in this outbreak. A major reservoir in the patient population could not be unveiled. However, the identification of a persisting environmental reservoir of strains with molecular determinants linked to human isolates, suggests a possible role of the environment in the maintenance of this long-term outbreak.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号