首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   281篇
  免费   12篇
  2023年   1篇
  2021年   7篇
  2020年   3篇
  2019年   4篇
  2018年   5篇
  2017年   5篇
  2016年   11篇
  2015年   12篇
  2014年   23篇
  2013年   20篇
  2012年   28篇
  2011年   27篇
  2010年   17篇
  2009年   8篇
  2008年   18篇
  2007年   21篇
  2006年   13篇
  2005年   9篇
  2004年   13篇
  2003年   11篇
  2002年   9篇
  2001年   9篇
  2000年   7篇
  1999年   4篇
  1998年   1篇
  1997年   1篇
  1996年   1篇
  1994年   1篇
  1991年   3篇
  1971年   1篇
排序方式: 共有293条查询结果,搜索用时 171 毫秒
141.
The global effects of 5-fluorouracil (FU) on cervical carcinoma cells were analyzed using an efficient proteomic method. More than 50 proteins showed a significant change in 5-FU-treated cervical carcinoma cells compared to control cells. Among them, 34 proteins have been identified by employing two-dimensional gel electrophoresis and MALDI-TOF-MS using peptide mass fingerprinting. In results, 22 proteins were upregulated (CIDE-B [cell death-inducing DFFA-like effector B], caspase-3, caspase-8, Apo-1/CD95 (Fas), etc.) and 12 proteins were downregulated (mitotic checkpoint protein BUB3, myc proto-oncogene protein [c-myc], src substrate cortactin, transforming protein p21A, etc.) by 5-FU treatment in HeLa cervical carcinoma cells as determined by spot volume (P <0.05). Our experiments showed that 5-FU engaged the mitochondrial apoptotic pathway involving cytosolic cytochrome c release and subsequent activation of caspase-9 and caspase-3 as well as the membrane death receptor (DR)-mediated apoptotic pathway involving activation of caspase-8 with an Apo-1/CD95 (Fas)-dependent fashion. In addition, we could observe reduction of HPV-18 E6/E7 gene expression and activation of p53, pRb, and p21waf1 proteins by 5-FU treatment in HeLa cervical carcinoma cells. In conclusion, we suggest that 5-FU suppresses the growth of cervical cancer cells not only by antiproliferative effect but also antiviral regulation. Our findings may offer new insights into the mechanism of anticancer effect affected by 5-FU treatment in cervical cancer cells and its mode of action.  相似文献   
142.
cDNA microarray and proteomics studies were performed to analyze the genomic and proteomic expression patterns in HPV-16 E6 gene transfected stable human carcinoma cell lines. Among 1024 known genes and ESTs tested by cDNA microarray, we found 50 upregulated and 35 downregulated genes in RC10.1 HPV-16 E6 transfected human colon adenocarcinoma cells compared to RKO cells, and 27 upregulated and 43 downregulated genes in A549E6 HPV-16 E6 transfected human lung adenocarcinoma cells compared to A549 cells. Employing two dimensional gel electrophoresis and MALDI-TOF-MS, the global pattern of protein expressions in RC10.1 human colon adenocarcinoma and A549E6 human lung adenocarcinoma cell lines stably expressing the HPV 16-E6 gene were compared with those of RKO and A549 cell lines to generate a differential protein expression catalog. We found 13 upregulated and 13 downregulated proteins in RC10.1 (E6-expressing RKO) cells compared to RKO cells and 12 upregulated and 14 downregulated proteins in A549E6 (E6-expressing A549) cells compared to A549 cells. The identified genes and proteins were classified into several groups according to the subcellular function. Expressing pattern of three genes and proteins (CDK5, Bak, and I-TRAF) were matched in both analyses of cDNA microarray and proteomics. These powerful approaches using cDNA microarray and proteomics could provide in-depth information on the impact of HPV-16 E6-related genes and proteins. Differential gene and protein expression patterns by transfection of HPV-16 E6 will provide the nucleus of valuable resource for investigation of the biochemical basis of cervical carcinogenesis. Further understanding of this data base may provide valuable resources for developing novel diagnostic markers and therapeutic targets of cervical cancer.  相似文献   
143.
Electro-spinning and electro-blowing of hyaluronic acid   总被引:1,自引:0,他引:1  
Um IC  Fang D  Hsiao BS  Okamoto A  Chu B 《Biomacromolecules》2004,5(4):1428-1436
In this study, hyaluronic acid (HA) was electro-spun and electro-blown to prepare nonwoven nanofibrous membranes. Critical parameters for processing and corresponding effects on the membrane morphology were investigated using the methods of rheology and scanning electron microscopy (SEM). During electro-spinning, the optimal HA concentration window for nanofibrous formation was determined within a narrow range of 1.3-1.5 w/v %, corresponding to a solution viscosity range of 3-30 Pa s at a shear rate of 1 s(-1). SEM results indicated that, with increases in (1) the total concentration by blending of low molecular weight HA, (2) the evaporation rate by the addition of ethanol, and/or (3) the feeding rate of solution, the electro-spinning performance for creating nanofibers was improved. However, the improvement was not sufficient to achieve a consistent production of high quality nonwoven nanofiber membranes. This problem was overcome by a new electro-blowing process using the combination of air flow and electro-spinning. Although air blowing at room temperature around the spinneret orifice did not exhibit a remarkable enhancement of nanofiber formation of HA, the performance was significantly improved with an increase in the air blowing rate. SEM results showed that the temperature of air-blowing was the most effective parameter in ensuring HA nanofiber formation. As the temperature of the blown air increased from 25 to 57 degrees C, the nanofiber formation became consistent and uniform. A high quality HA nonwoven membrane of nanofibers was successfully produced by blowing air at 57 degrees C with a 70 ft(3)/hr flow rate.  相似文献   
144.
Kim DK  Cho ES  Yoo JH  Um HD 《Molecules and cells》2000,10(5):552-556
Despite the expression of Fas, some clones of myeloma cells are resistant to Fas-mediated apoptosis. To define a cellular factor involved in the resistance, we performed a comparative study using two clones of myeloma cells, RPMI8226 and U266. These cells were reported to express cell surface Fas at similar levels, but only RPMI8226 cells lost their viability upon anti-Fas treatment. The resistance of U266 cells to anti-Fas did not appear to reflect dysregulation of Bcl-2, Bcl-XL, and Bax, because these proteins were expressed in both RPMI8226 and U266 cells to similar levels. Moreover, levels of those proteins were not significantly altered by treating RPMI8226 cells with IL-6, a cytokine which suppresses the Fas-mediated death of RPMI8226 cells. Interestingly, mRNA levels of FLIPL, an endogenous inhibitor of Fas signaling, were constitutively elevated in U266 cells. Consistent with this observation, U266 cells expressed both FLIPL protein and its truncated 43 kDa product which is seen in FLIPL-overexpressing cells. The truncated form of FLIPL protein was not detected in RPMI8226. Moreover, the levels of truncated FLIPL in U266 cells were considerably higher than those of pro-FLIPL in RPMI8226. The overall data indicate that FLIPL is constitutively hyperexpressed in U266 cells. However, IL-6 failed to enhance the protein levels of FLIP molecules in either of the tested cells. It appears, therefore, that FLIPL plays a role in the intrinsic resistance of U266 cells to the apoptotic action of Fas, but is not involved in the protective action of IL-6.  相似文献   
145.
Um SY  McDonald TV 《PloS one》2007,2(9):e933
The small proteins encoded by KCNE1 and KCNE2 have both been proposed as accessory subunits for the HERG channel. Here we report our investigation into the cell biology of the KCNE-HERG interaction. In a co-expression system, KCNE1 was more readily co-precipitated with co-expressed HERG than was KCNE2. When forward protein trafficking was prevented (either by Brefeldin A or engineering an ER-retention/retrieval signal onto KCNE cDNA) the intracellular abundance of KCNE2 and its association with HERG markedly increased relative to KCNE1. HERG co-localized more completely with KCNE1 than with KCNE2 in all the membrane-processing compartments of the cell (ER, Golgi and plasma membrane). By surface labeling and confocal immunofluorescence, KCNE2 appeared more abundant at the cell surface compared to KCNE1, which exhibited greater co-localization with the ER-marker calnexin. Examination of the extracellular culture media showed that a significant amount of KCNE2 was extracellular (both soluble and membrane-vesicle-associated). Taken together, these results suggest that during biogenesis of channels HERG is more likely to assemble with KCNE1 than KCNE2 due to distinctly different trafficking rates and retention in the cell rather than differences in relative affinity. The final channel subunit constitution, in vivo, is likely to be determined by a combination of relative cell-to-cell expression rates and differential protein processing and trafficking.  相似文献   
146.
Development of effective therapeutic strategies to eliminate cancer stem-like cells (CSCs), which play a major role in drug resistance and disease recurrence, is critical to improve cancer treatment outcomes. The current investigation was undertaken to examine the effectiveness of the combination treatment of Hsp90 inhibitor and SIRT1 inhibitor in inhibiting the growth of chemo-resistant stem-like cells isolated from human chronic myeloid leukemia K562 cells. Inhibition of SIRT1 by use of SIRT1 siRNA or SIRT1 inhibitors (amurensin G and EX527) effectively potentiated sensitivity of Hsp90 inhibitors (17-AAG and AUY922) in CD44high K562 stem-like cells expressing high levels of CSC-related molecules including Oct4, CD34, β-catenin, c-Myc, mutant p53 (mut p53), BCRP and P-glycoprotein (P-gp) as well as CD44. SIRT1 depletion caused significant down-regulation of heat shock factor 1 (HSF1)/heat shock proteins (Hsps) as well as these CSC-related molecules, which led to the sensitization of CD44high K562 cells to Hsp90 inhibitor by SIRT1 inhibitor. Moreover, 17-AAG-mediated activation of HSF1/Hsps and P-gp-mediated efflux, major causes of Hsp90 inhibitor resistance, was suppressed by SIRT1 inhibitor in K562-CD44high cells. Our data suggest that combined treatment with Hsp90 inhibitor and SIRT1 inhibitor could be an effective therapeutic approach to target CSCs that are resistant to current therapies.  相似文献   
147.
Kim SJ  Jeong HJ  Moon PD  Myung NY  Kim MC  Kang TH  Lee KM  Park RK  So HS  Kim EC  An NH  Um JY  Kim HM  Hong SH 《Life sciences》2007,81(11):863-872
SC-236, (4-[5-(4-chlorophenyl)-3-(trifluoromethyl)-1-pyrazol-1-]benzenesulfonamide; C(16)H(11)ClF(3)N(3)O(2)S) is a highly selective cyclooxygenase (COX)-2 inhibitor. Recently, there have been reports that SC-236 protects against cartilage damage in addition to reducing inflammation and pain for those with osteoarthritis. However, the mechanism involved in an inflammatory allergic reaction in a murine model has not been examined. The aim of the present study is to elucidate whether and how SC-236 modulates the inflammatory allergic reaction in a murine model. In this study, the anti-allergic effect was investigated using rat peritoneal mast cells, IgE-induced passive cutaneous anaphylaxis (PCA), and the ear-swelling model in mice. Also, we examined the inhibitory effect of SC-236 on the expression of interleukin (IL)-6 and tumor necrosis factor (TNF)-alpha. SC-236 was found to inhibit the ear-swelling response and histamine release in the murine model. Additionally, SC-236 was revealed to inhibit the PCA response and COX-2 expression. As a final step, the inhibitory mechanism of SC-236 was shown to occur through phosphorylation of extracellular signal-regulated protein kinase (ERK). These in vitro and in vivo results provide new insight into the pharmacological actions of SC-236 as a potential molecule for therapy for inflammatory allergic diseases.  相似文献   
148.
149.
Jin HO  An S  Lee HC  Woo SH  Seo SK  Choe TB  Yoo DH  Lee SB  Um HD  Lee SJ  Park MJ  Kim JI  Hong SI  Rhee CH  Park IC 《Cellular signalling》2007,19(7):1393-1403
Redd1, a recently discovered stress-response gene, is regulated by hypoxia via hypoxia-inducible factor 1 (HIF-1) and by DNA damage via p53/p63; however, the signaling pathway by which its expression is induced by hypoxia has not been elucidated. In the present study, we demonstrated that the expression of Redd1 in response to hypoxia (1% O(2)), hypoxia-mimetic agent, cobalt chloride (CoCl(2)) and high cell density (HCD) requires coactivation of HIF-1alpha and Sp1. CoCl(2) and HCD induced the activation of HIF-1alpha and Sp1 in HeLa cells, and siRNAs targeting HIF-1alpha and Sp1 abrogated Redd1 expression. Inhibition of phosphatidylinositol 3-kinase (PI3K) by LY294002 and by a dominant-negative PI3K mutant reduced the expression of Redd1 and activation of HIF-1alpha and Sp1 by CoCl(2) and HCD. Also, suppression of Akt activation blocked the expression of Redd1 and the activation of HIF-1alpha and Sp1 by CoCl(2) and HCD. Furthermore, we found that the induction of Redd1 expression by CoCl(2) can be mediated by activation of Sp1 in HIF-1alpha-deficient cells but that a higher level of Redd1 expression is achieved when these cells are transfected with HIF-1alpha. These results demonstrate that hypoxic condition-and HCD-induced expression of Redd1 is mediated by coactivation of Sp1 and HIF-1alpha downstream of the PI3K/Akt signaling pathway.  相似文献   
150.
Epigallocatechin-3-gallate (EGCG) is the major polyphenol component of green tea and is primarily responsible for the green tea effect. EGCG possesses two triphenolic groups in its structure. These groups are reported to be important with respect to anticarcinogenic and antioxidant effects. However, the anti-inflammatory effect of EGCG on Alzheimer's disease (AD) is still not fully understood. In this study, we investigated the effects of EGCG in attenuating the inflammatory response induced by interleukin (IL)-1beta+beta-amyloid (25-35) fragment (Abeta) in human astrocytoma, U373MG cells. EGCG significantly inhibited the IL-1beta+Abeta (25-35)-induced IL-6, IL-8, vascular endothelial growth factor (VEGF) and prostaglandin (PG)E(2) production at 24 h (P<.01). The maximal inhibition rate of IL-6, IL-8, VEGF and PGE(2) production by EGCG was approximately 54.40%, 56.01%, 69.06% and 47.03%, respectively. EGCG also attenuated the expression of cyclooxygenase-2 and activation of nuclear factor-kappaB induced by IL-1beta+Abeta (25-35). We demonstrated that EGCG suppresses IL-1beta+Abeta (25-35)-induced phosphorylation of the mitogen-activated protein kinase p38 and the c-Jun N-terminal kinase. In addition, EGCG induced the expression of mitogen-activated protein kinase phosphatase-1. These results provide new insight into the pharmacological actions of EGCG and its potential therapeutic application to various neurodegenerative diseases such as AD.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号