首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1203篇
  免费   83篇
  国内免费   1篇
  2021年   13篇
  2020年   5篇
  2019年   17篇
  2018年   18篇
  2017年   17篇
  2016年   30篇
  2015年   36篇
  2014年   56篇
  2013年   58篇
  2012年   85篇
  2011年   69篇
  2010年   52篇
  2009年   50篇
  2008年   82篇
  2007年   76篇
  2006年   73篇
  2005年   64篇
  2004年   64篇
  2003年   66篇
  2002年   66篇
  2001年   10篇
  2000年   15篇
  1999年   15篇
  1998年   17篇
  1997年   22篇
  1996年   20篇
  1995年   28篇
  1994年   14篇
  1993年   11篇
  1992年   16篇
  1991年   8篇
  1990年   10篇
  1989年   8篇
  1988年   6篇
  1987年   8篇
  1986年   6篇
  1985年   4篇
  1984年   7篇
  1982年   10篇
  1981年   4篇
  1980年   7篇
  1979年   2篇
  1978年   4篇
  1977年   3篇
  1976年   3篇
  1974年   2篇
  1973年   3篇
  1972年   7篇
  1971年   3篇
  1970年   3篇
排序方式: 共有1287条查询结果,搜索用时 31 毫秒
51.
One hundred and two conformations of alpha- and beta-D-allopyranose, the C-3 substituted epimer of glucopyranose, were geometry optimized using the density functional, B3LYP, and the basis set, 6-311++G **. Full geometry optimization was performed on different ring geometries and on the hydroxymethyl rotamers (gg/gt/tg). Analytically derived Hessians were used to calculate zero point energy, enthalpy, and entropy. The lowest energy and free energy conformation found is the alpha-tg(g-)-4C1-c conformation, which is only slightly higher in electronic (approximately 0.2 kcal/mol) and free energy than the lowest energy alpha-D-glucopyranose. The in vacuo calculations showed a small (approximately 0.3 kcal/mol) energetic preference for the alpha- over the beta-anomer for allopyranose in the 4C1 conformation, whereas in the 1C4 conformation a considerable (approximately 1.6 kcal/mol) energetic preference for the beta- over the alpha-anomer for allopyranose was encountered. The results are compared to previous aldohexose calculations in vacuo. Boat and skew forms were found that remained stable upon gradient optimization although many starting boat conformations moved to other skew forms upon optimization. As found for glucose, mannose, and galactose the orientation and interaction of the hydroxyl groups make the most significant contributions to the conformation/energy relationship in vacuo. A comparison of different basis sets and density functionals is made in the Discussion section, confirming the appropriateness of the level of theory used here.  相似文献   
52.
Human mitochondrial glutaredoxin 2 (GLRX2), which controls intracellular redox balance and apoptosis, exists in a dynamic equilibrium of enzymatically active monomers and quiescent dimers. Crystal structures of both monomeric and dimeric forms of human GLRX2 reveal a distinct glutathione binding mode and show a 2Fe-2S-bridged dimer. The iron-sulfur cluster is coordinated through the N-terminal active site cysteine, Cys-37, and reduced glutathione. The structures indicate that the enzyme can be inhibited by a high GSH/GSSG ratio either by forming a 2Fe-2S-bridged dimer that locks away the N-terminal active site cysteine or by binding non-covalently and blocking the active site as seen in the monomer. The properties that permit GLRX2, and not other glutaredoxins, to form an iron-sulfur-containing dimer are likely due to the proline-to-serine substitution in the active site motif, allowing the main chain more flexibility in this area and providing polar interaction with the stabilizing glutathione. This appears to be a novel use of an iron-sulfur cluster in which binding of the cluster inactivates the protein by sequestering active site residues and where loss of the cluster through changes in subcellular redox status creates a catalytically active protein. Under oxidizing conditions, the dimers would readily separate into iron-free active monomers, providing a structural explanation for glutaredoxin activation under oxidative stress.  相似文献   
53.
Identification of mucin-type O-glycosylated proteins with known functions in model organisms like Drosophila could provide keys to elucidate functions of the O-glycan moiety and proteomic analyses of O-glycoproteins in higher eukaryotes remain a challenge due to structural heterogeneity and a lack of efficient tools for their specific isolation. Here we report a strategy to evaluate the O-glycosylation potential of the embryonal hemocyte-like Drosophila Schneider 2 (S2) cell line by expression of recombinant glycosylation probes derived from tandem repeats of the human mucin MUC1 or of the Drosophila salivary gland protein Sgs1. We obtained evidence that mucin-type O-glycosylation in S2 cells grown under serum-free conditions is restricted to the Tn-antigen (GalNAcalpha-Ser/Thr) and the T-antigen (Galbeta1-3GalNAcalpha-Ser/Thr) and this structural homogeneity enables unique glycoproteomic strategies. We present a label-free strategy for the isolation, profiling and analysis of O-glycosylated proteins consisting of serial lectin affinity capture, 2-DE-based glycoprotein analysis by O-glycan specific mAbs and protein identification by MALDI-MS. Protein identity and O-glycosylation was confirmed by ESI-MS/MS with detection of diagnostic sugar oxonium-ion fragments. Using this strategy, we established 2-D reference maps and identified 21 secreted and intracellular mucin-type O-glycoproteins. Our results show that Drosophila S2 cells express O-glycoproteins involved in a wide range of biological functions including proteins of the extracellular matrix (Laminin gamma-chain, Peroxidasin and Glutactin), pathogen recognition proteins (Gnbp1), stress response proteins (Glycoprotein 93), secreted proteases (Matrix-metalloprotease 1 and various trypsin-like serine proteases), protease inhibitors (Serpin 27 A) and proteins of unknown function.  相似文献   
54.
Patients with LQT syndrome are prone to lifethreatening arrhythmias. After surviving such an event, implantation of an ICD is indicated. There are, however, special subtle demands in the treatment of these patients. In this case report we describe our findings in a patient with LQT1 syndrome, and the pitfalls that can and must be avoided. (Neth Heart J 2007;15:418-21.)  相似文献   
55.
A total of 462 coprolites from three localities exposing Upper Cretaceous deposits in the Münster Basin, northwestern Germany, have been subjected to an array of analytical techniques, with the aim of elucidating ancient trophic structures and predator–prey interactions. The phosphatic composition, frequent bone inclusions, size and morphology collectively suggest that most, if not all, coprolites were produced by carnivorous (predatory or scavenging) vertebrates. The bone inclusions further indicate that the coprolite producers preyed principally upon fish. Putative host animals include bony fish, sharks and marine reptiles – all of which have been previously recorded from the Münster Basin. The presence of borings and other traces on several coprolites implies handling by coprophagous organisms. Remains of epibionts are also common, most of which have been identified as the encrusting bivalve Atreta. Palynological analyses of both the coprolites and host rocks reveal a sparse assemblage dominated by typical Late Cretaceous dinoflagellates, and with sub‐ordinate fern spores, conifer pollen grains and angiosperm pollen grains. The dinoflagellate key taxon Exochosphaeridium cenomaniense corroborates a Cenomanian age for the Plenus Marl, from which most studied coprolites derive. The findings of this study highlight the potential of a multi‐proxy approach when it comes to unravelling the origin, composition and importance of coprolites in palaeoecosystem analyses.  相似文献   
56.
57.
C4 photosynthesis is characterized by a division of labour between two different photosynthetic cell types, mesophyll and bundle-sheath cells. Relying on phosphoenolpyruvate carboxylase (PEPC) as the primary carboxylase in the mesophyll cells a CO2 pump is established in C4 plants that concentrates CO2 at the site of ribulose 1,5-bisphosphate carboxylase/oxygenase in the bundle-sheath cells. The C4 photosynthetic pathway evolved polyphyletically implying that the genes encoding the C4 PEPC originated from non-photosynthetic PEPC progenitor genes that were already present in the C3 ancestral species. The dicot genus Flaveria (Asteraceae) is a unique system in which to investigate the molcular changes that had to occur in order to adapt a C3 ancestral PEPC gene to the special conditions of C4 photosynthesis. Flaveria contains not only C3 and C4 species but also a large number of C3-C4 intermediates which vary to the degree in which C4 photosynthetic traits are expressed. The C4 PEPC gene of Flaveria trinervia, which is encoded by the ppcA gene class, is highly expressed but only in mesophyll cells. The encoded PEPC protein possesses the typical kinetic and regulatory features of a C4-type PEPC. The orthologous ppcA gene of the C3 species Flaveria pringlei encodes a typical non-photosynthetic, C3-type PEPC and is weakly expressed with no apparent cell or organ specificity. PEPCs of the ppcA type have been detected also in C3-C4 intermediate Flaveria species. These orthologous PEPCs have been used to determine the molecular basis for C4 enzyme characteristics and to understand their evolution. Comparative and functional analyses of the ppcA promoters from F. trinervia and F. pringlei make it possible to identity the cis-regulatory sequences for mesophyll-specific gene expression and to search for the corresponding trans-regulatory factors.  相似文献   
58.
Well-established biodegradation tests use biogenously evolved carbon dioxide (CO(2)) as an analytical parameter to determine the ultimate biodegradability of substances. A newly developed analytical technique based on the continuous online measurement of conductivity showed its suitability over other techniques. It could be demonstrated that the method met all criteria of established biodegradation tests, gave continuous biodegradation curves, and was more reliable than other tests. In parallel experiments, only small variations in the biodegradation pattern occurred. When comparing the new online CO(2) method with existing CO(2) evolution tests, growth rates and lag periods were similar and only the final degree of biodegradation of aniline was slightly lower. A further test development was the unification and parallel measurement of all three important summary parameters for biodegradation--i.e., CO(2) evolution, determination of the biochemical oxygen demand (BOD), and removal of dissolved organic carbon (DOC)--in a multicomponent biodegradation test system (MCBTS). The practicability of this test method was demonstrated with aniline. This test system had advantages for poorly water-soluble and highly volatile compounds and allowed the determination of the carbon fraction integrated into biomass (heterotrophic yield). The integrated online measurements of CO(2) and BOD systems produced continuous degradation curves, which better met the stringent criteria of ready biodegradability (60% biodegradation in a 10-day window). Furthermore the data could be used to calculate maximal growth rates for the modeling of biodegradation processes.  相似文献   
59.
60.
A stable isotope dilution assay was developed for the sensitive determination of D-galactonic acid. D-[U-13C(6)]galactono-1,4-lactone was prepared as internal standard. Unlabelled and U-13C-labelled D-galactonic acid species were converted to the N-(1-butyl)galactonamide pentaacetate derivatives and assessed by gas chromatography-mass spectrometry (GC-MS). Positive chemical ionisation and monitoring of the [MH-60](+)-ions in the galactonate chromatographic peak at m/z 402 and m/z 408 were used for quantification. The procedure was applied to study the variability of D-galactonate excretion in healthy subjects and galactosemic patients and to monitor the D-galactonate-D-galactitol ratio in human urine.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号