首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   233篇
  免费   20篇
  2021年   3篇
  2019年   2篇
  2018年   5篇
  2017年   3篇
  2016年   3篇
  2015年   7篇
  2014年   4篇
  2013年   9篇
  2012年   13篇
  2011年   15篇
  2010年   6篇
  2009年   7篇
  2008年   6篇
  2007年   12篇
  2006年   6篇
  2005年   5篇
  2004年   8篇
  2003年   8篇
  2002年   10篇
  2001年   6篇
  2000年   13篇
  1999年   7篇
  1998年   2篇
  1997年   4篇
  1996年   2篇
  1994年   3篇
  1993年   3篇
  1992年   6篇
  1991年   12篇
  1990年   10篇
  1989年   4篇
  1988年   7篇
  1987年   6篇
  1986年   2篇
  1985年   5篇
  1984年   2篇
  1983年   3篇
  1982年   2篇
  1981年   5篇
  1980年   3篇
  1979年   2篇
  1978年   1篇
  1977年   2篇
  1976年   1篇
  1974年   1篇
  1973年   1篇
  1971年   1篇
  1968年   1篇
  1966年   1篇
  1964年   1篇
排序方式: 共有253条查询结果,搜索用时 15 毫秒
41.
In a continuous flow bioreactor seeded with microbes from municipal activated sludge, complete organic carbon oxidation of simulated graywater (wastewater produced in human residences, excluding toilet wastes) was achieved at dilution rates up to 0.36 h−1 in the presence of 64.1 μ M linear alkylbenzenesulfonate (LAS) L−1. At LAS concentrations of 187 μ M, the system functioned only at dilution rates up to 0.23 h−1, and the biomass yield was two-fold lower. There were physiological changes in the microbial communities under different operating conditions, as measured by specific contents of ATP and extracellular hydrolases as well as the respiratory potential of the biomass. LAS inhibited the activity of LAS-degrading microbes at >150  μ M LAS, and the activity of other microbes at >75 μ M LAS. Chemical analysis of graywater indicated that samples consisted primarily of biological polymers (proteins and polysaccharides) and lower concentrations of surfactants. Biological remediation of graywater is possible, although treatment efficiency is influenced by the operating conditions and wastestream composition. Received 08 July 1996/ Accepted in revised form 14 November 1996  相似文献   
42.
43.
In part of the life cycle within their sand fly vector, Leishmania major parasites first attach to the fly's midgut through their main surface adhesin lipophosphoglycan (LPG) and later resynthesize a structurally distinct LPG that results in detachment and eventual transmission. One of these structural modifications requires the addition of alpha1,2-D-arabinopyranose caps to beta1,3-galactose side chains in the phosphoglycan repeat unit domain of LPG. We had previously identified two side chain arabinose genes (SCA1/2) that were involved in the alpha1,2-D-Arap capping. SCA1/2 exhibit canonical glycosyltransferase motifs, and overexpression of either gene leads to elevated microsomal alpha1,2-D-ArapT activity, resulting in arabinopyranosylation of beta1,3-Gal side chains in LPG (hereafter called side chain D-arabinopyranosyltransferase [sc-D-ArapT]). Heterologous expression in a null arabinose background was used to determine whether the SCA1 gene encodes the actual sc-D-ArapT. SCA1 expression constructs introduced into both mammalian COS-7 cells and the baculovirus-sf9 cell system exhibited considerable expression of the protein. However, functional sc-D-ArapT activity was observed only in the latter. In in vitro assays incubated with guanidine 59-diphosphate (GDP)-D-[3H]Arap as the sugar donor and utilizing exogenous LPG as an acceptor, significant sc-D-ArapT activity was observed when microsomes from the baculovirus-sf9 cells were incubated in presence of the LPG acceptor. No activity was observed in the absence of LPG. These results demonstrate that SCA1 encodes a sc-D-ArapT and provide the first example of heterologous expression of a D-ArapT gene.  相似文献   
44.
45.
46.
Interspecies variations in lipophosphoglycan (LPG) have been the focus of intense study over the years due its role in specificity during sand fly-Leishmania interaction. This cell surface glycoconjugate is highly polymorphic among species with variations in sugars that branch off the conserved Gal(β1,4)Man(α1)-PO(4) backbone of repeat units. However, the degree of intraspecies polymorphism in LPG of Leishmania infantum (syn. Leishmania chagasi) is not known. In this study, intraspecific variation in the repeat units of LPG was evaluated in 16 strains of L. infantum from Brazil, France, Algeria and Tunisia. The structural polymorphism in the L. infantum LPG repeat units was relatively slight and consisted of three types: type I does not have side chains; type II has one β-glucose residue that branches off the disaccharide-phosphate repeat units and type III has up to three glucose residues (oligo-glucosylated). The significance of these modifications was investigated during in vivo interaction of L. infantum with Lutzomyia longipalpis, and in vitro interaction of the parasites and respective LPGs with murine macrophages. There were no consequential differences in the parasite densities in sand fly midguts infected with Leishmania strains exhibiting type I, II and III LPGs. However, higher nitric oxide production was observed in macrophages exposed to glucosylated type II LPG.  相似文献   
47.
The expression of the anti‐apoptotic protein BAG3 is induced in several cell types by exposure to high temperature, oxidants, and other stressful agents. We investigated whether exposure to 50 Hz electromagnetic fields raised BAG3 levels in the human melanoma cell line M14, in vitro and in orthotopic xenografts. Exposure of cultured cells or xenografts for 6 h or 4 weeks, respectively, produced a significant (P < 0.01) increase in BAG3 protein amounts. Interestingly, at the same times, we could not detect any significant variation in the levels of HSP70/72 protein or cell apoptosis. These results confirm the stressful effect of exposure to ELF in human cells, by identifying BAG3 protein as a marker of ELF‐induced stress. Furthermore, they suggest that BAG3 induction by ELF may contribute to melanoma cell survival and/or resistance to therapy. J. Cell. Physiol. 226: 2901–2907, 2011. © 2011 Wiley‐Liss, Inc.  相似文献   
48.
Results are presented of an integrated stratigraphic (calcareous plankton biostratigraphy, cyclostratigraphy and magnetostratigraphy) study of the Serravallian/Tortonian (S/T) boundary section of Monte Gibliscemi (Sicily, Italy). Astronomical calibration of the sedimentary cycles provides absolute ages for calcareous plankton bio-events in the interval between 9.8 and 12.1 Ma. The first occurrence (FO) of Neogloboquadrina acostaensis, usually taken to delimit the S/T boundary, is dated astronomically at 11.781 Ma, pre-dating the migratory arrival of the species at low latitudes in the Atlantic by almost 2 million years. In contrast to delayed low-latitude arrival of N. acostaensis, Paragloborotalia mayeri shows a delayed low-latitude extinction of slightly more than 0.7 million years with respect to the Mediterranean (last occurrence (LO) at 10.49 Ma at Ceara Rise; LO at 11.205 Ma in the Mediterranean). The Discoaster hamatus FO, dated at 10.150 Ma, is clearly delayed with respect to the open ocean. The ages of D. kugleri first and last common occurrence (FCO and LCO), Catinaster coalitus FO, Coccolithus miopelagicus last (regular) occurrence (L(R)O) and the D. hamatus/neohamatus cross-over, however, are in good to excellent agreement with astronomically tuned ages for the same events at Ceara Rise (tropical Atlantic), suggesting that both independently established timescales are consistent with one another. The lack of a reliable magnetostratigraphy hampers a direct comparison with the geomagnetic polarity timescale of Cande and Kent (1995; CK95), but ages of calcareous nannofossil events suggests that CK95 is significantly younger over the studied time interval. Approximate astronomical ages for the polarity reversals were obtained by exporting astronomical ages of selected nannofossil events from Ceara Rise (and the Mediterranean) to eastern equatorial Pacific ODP Leg 138 Site 845, which has a reliable magnetostratigraphy.Our data from the Rio Mazzapiedi–Castellania section reveal that the base of the Tortonian stratotype corresponds almost exactly with the first regular occurrence (FRO) of N. acostaensis s.s. as defined in the present study, dated at 10.554 Ma. An extrapolated age of 11.8 Ma calculated for the top of the Serravallian stratotype indicates that there is a gap between the top of the Serravallian and the base of the Tortonian stratotype, potentially rendering all bio-events in the interval between 11.8 and 10.554 Ma suitable for delimiting the S/T boundary. Despite the tectonic deformation and the lack of a magnetostratigraphy, Gibliscemi remains a candidate to define the S/T boundary by means of the Tortonian global boundary stratotype section and point (GSSP).  相似文献   
49.
50.
The role of HLA Class I antigens in T cell proliferation was investigated by using the anti-HLA Class I monoclonal antibodies (MoAb) CR10-215, CR10-325, and CR11-115. MoAb CR10-215 and CR11-115 recognize the same (or spatially close) monomorphic determinant, which is distinct and spatially distant from that reacting with MoAb CR10-325. Addition of MoAb CR10-215 and CR11-115 to cultures of peripheral blood mononuclear cells stimulated with MoAb OKT3, MoAb Pan T2, PHA, or PPD inhibited cell proliferation. The blocking is specific in that the anti-HLA Class I MoAb CR10-325 and the Pan T MoAb Pan T1 had no effect on the proliferation. The inhibitory activity of MoAb CR10-215 and CR11-115 does not reflect i) toxic effects, ii) induction of suppressor cells and factors, iii) blocking of the binding of mitogens to lymphocytes, iv) inhibition of the production of interleukin 1 (IL 1) and interleukin 2 (IL 2), or v) function of IL 2 receptor. Anti-HLA Class I MoAb were able to inhibit the proliferation of purified, Tac-, T cells. The inhibited cells did not express Tac antigen, as assayed by direct immunofluorescence, with MoAb anti-Tac, but released a normal amount of IL 2 in culture medium. These results indicate that monomorphic determinants of the HLA Class I complex are involved in the regulation of T cell proliferation. The effect appears to occur at the level of IL 2 receptor expression.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号