首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   381篇
  免费   29篇
  2023年   1篇
  2022年   1篇
  2021年   7篇
  2020年   8篇
  2019年   5篇
  2018年   7篇
  2017年   5篇
  2016年   16篇
  2015年   19篇
  2014年   18篇
  2013年   15篇
  2012年   29篇
  2011年   44篇
  2010年   18篇
  2009年   15篇
  2008年   21篇
  2007年   16篇
  2006年   11篇
  2005年   22篇
  2004年   24篇
  2003年   11篇
  2002年   6篇
  2001年   9篇
  2000年   8篇
  1999年   5篇
  1998年   5篇
  1997年   2篇
  1996年   3篇
  1995年   3篇
  1994年   2篇
  1993年   2篇
  1992年   3篇
  1991年   5篇
  1990年   3篇
  1989年   2篇
  1988年   9篇
  1987年   4篇
  1986年   2篇
  1985年   3篇
  1984年   5篇
  1983年   4篇
  1982年   1篇
  1981年   1篇
  1979年   2篇
  1977年   2篇
  1976年   3篇
  1970年   3篇
排序方式: 共有410条查询结果,搜索用时 16 毫秒
21.
OBJECTIVE: To assess the presence of aneuploidy in oral lichen planus (OLP) and its usefulness as a prognostic marker. STUDY DESIGN: Eighty-one formalin-fixed, paraffin-embedded biopsy samples taken from atrophic-erosive OLP from 70 patients were studied. Approximately 150 random nuclei in basal and/or parabasal epithelia were analyzed with static cytometry. RESULTS: Aneuploidy was detected in 41% of samples. OLPs with ulcerations or location in the tongue had significantly higher values, respectively, for the 2.5c exceeding rate (ER) (p<0.001 and 0.001) and proliferation index (PI) (p = 0.012 and 0.013) than did lesions without ulcerations or at other locations. 2.5c ER was significantly higher in dysplastic OLP lesions (p < 0.001), and the significant value (p = 0.001)for 2.5c ER discriminating DNA aneuploidy was 15.3%. In multivariate analysis only the G2/M ER (G2/MER) was a significant independent predictor of developing cancer in OLP (OR 2.349, 95% CI 1.39-3.97, p = 0.001). CONCLUSION: Ulcerated atrophic-erosive OLPs of the tongue and with dysplasia are at increased risk of cancer development. 2.5c ER, PI and G2/MER might be useful in prognosticating the increased risk of malignancy in OLP.  相似文献   
22.
23.
The aim of this study was to describe and evaluate the significance of a porous surface with bioactive glass granules (S53P4) covering an artificial bulk material based on polymethylmetacrylate (PMMA) and fibre-reinforced composite (FRC) technology. Effort was focused particularly on characters of the porous surface and biomechanical properties of the material in vitro, and test in vivo the implant in reconstruction in an experimental long bone segment defect model. The defect, 10 mm in length, created in the shaft of rabbit tibia, was reconstructed by the implant and fixed by intramedullary K-wires. The implant was incorporated within 4 weeks by new bone growth from the host bone covering particularly its posterior surface and cortex/implant junctions with bridging trabecular bone. Later, at 8 weeks, new bone was found also at the cortex/implant interface and in the medullary canal of the implant. Histometric measurements revealed direct bone/implant surface contact in 34% at the interface. Bioactive glass granules in the porous surface evoked the most direct contact with bone. The implants manufactured from PMMA only served as a control group, and showed significantly lower osteoconductive properties. Biomechanical measurements in vitro of fibre-reinforced PMMA specimens revealed values for bending strength and the flexural modulus to match them to human bone. This artificial bulk bone material based on PMMA/FRC technology seems to have proposing properties to be used as a bone substitute on load-bearing conditions. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   
24.
We have previously selected a peptide insert FPCDRLSGYWERGIPSPCVR recognizing the Puumala virus (PUUV) G2-glycoprotein-specific neutralizing monoclonal antibody (MAb) 1C9 with Kd of 2.85 x 10(-8) from a random peptide library X2CX14CX2 expressed on the pIII protein of the filamentous phage fd-tet. We have now created a second-generation phage-displayed peptide library in which each amino acid of the peptide was mutated randomly to another with a certain probability. Peptides were selected for higher affinity for MAb 1C9 and for a common binding motif for MAb 4G2 having an overlapping epitope with MAb 1C9 in G2 glycoprotein. The resulting peptides were synthesized as spots on cellulose membrane. Amino acid changes which improved the reactivity of the peptides to MAb 1C9 were combined in the peptide ATCDKLFGYYERGIPLPCAL with Kd of 1.49 x 10(-9) in biosensor measurements. Our results show that the binding properties of peptides, the affinity and the specificity can be improved and the binding specificity determining amino acids and structural factors can be analyzed by combining binding assays with synthetic peptides on membrane with the use of second-generation phage display libraries.  相似文献   
25.
Biophotovoltaics has emerged as a promising technology for generating renewable energy because it relies on living organisms as inexpensive, self‐repairing, and readily available catalysts to produce electricity from an abundant resource: sunlight. The efficiency of biophotovoltaic cells, however, has remained significantly lower than that achievable through synthetic materials. Here, a platform is devised to harness the large power densities afforded by miniaturized geometries. To this effect, a soft‐lithography approach is developed for the fabrication of microfluidic biophotovoltaic devices that do not require membranes or mediators. Synechocystis sp. PCC 6803 cells are injected and allowed to settle on the anode, permitting the physical proximity between cells and electrode required for mediator‐free operation. Power densities of above 100 mW m‐2 are demonstrated for a chlorophyll concentration of 100 μM under white light, which is a high value for biophotovoltaic devices without extrinsic supply of additional energy.  相似文献   
26.
We studied in detail the mean micro fibril angle and the width of cellulose crystals from the pith to the bark of a 15-year-old Maidenhair tree(Ginkgo biloba L.). The orientation of cellulose micro fibrils with respect to the cell axis and the width and length of cellulose crystallites were determined using Xray diffraction. Raman microscopy was used to compare the lignin distribution in the cell wall of normal/opposite and compression wood, which was found near the pith. Ginkgo biloba showed a relatively large mean micro fibril angle,varying between 19° and 39° in the S2 layer, and the average width of cellulose crystallites was 3.1–3.2 nm. Mild compression wood without any intercellular spaces or helical cavities was observed near the pith. Slit-like bordered pit openings and a heavily lignified S2 L layer con firmed the presence of compression wood. Ginkgo biloba showed typical features present in the juvenile wood of conifers. The micro fibril angle remained large over the 14 annual rings. The entire stem disc,with a diameter of 18 cm, was considered to consist of juvenile wood. The properties of juvenile and compression wood as well as the cellulose orientation and crystalline width indicate that the wood formation of G. biloba is similar to that of modern conifers.  相似文献   
27.
The negative effects on adult behavior of juvenile undernourishment are well documented in vertebrates, but relatively poorly understood in invertebrates. We examined the effects of larval nutritional stress on the foraging and recruitment behavior of an economically important model invertebrate, the honey bee (Apis mellifera). Pollen, which supplies essential nutrients to developing workers, can become limited in colonies because of seasonal dearths, loss of foraging habitat, or intensive management. However, the functional consequences of being reared by pollen-stressed nestmates remain unclear, despite growing concern that poor nutrition interacts with other stressors to exacerbate colony decline. We manipulated nurse bees’ access to pollen and then assessed differences in weight, longevity, foraging activity, and waggle-dance behavior of the workers that they reared (who were co-fostered as adults). Pollen stress during larval development had far-reaching physical and behavioral effects on adult workers. Workers reared in pollen-stressed colonies were lighter and shorter lived than nestmates reared with adequate access to pollen. Proportionally fewer stressed workers were observed foraging and those who did forage started foraging sooner, foraged for fewer days, and were more likely to die after only a single day of foraging. Pollen-stressed workers were also less likely to waggle dance than their unstressed counterparts and, if they danced, the information they conveyed about the location of food was less precise. These performance deficits may escalate if long-term pollen limitation prevents stressed foragers from providing sufficiently for developing workers. Furthermore, the effects of brief pollen shortages reported here mirror the effects of other environmental stressors that limit worker access to nutrients, suggesting the likelihood of their synergistic interaction. Honey bees often experience the level of stress that we created, thus our findings underscore the importance of adequate nutrition for supporting worker performance and their potential contribution to colony productivity and quality pollination services.  相似文献   
28.
Knowledge of the effects of thermal conditions on animal movement and dispersal is necessary for a mechanistic understanding of the consequences of climate change and habitat fragmentation. In particular, the flight of ectothermic insects such as small butterflies is greatly influenced by ambient temperature. Here, variation in body temperature during flight is investigated in an ecological model species, the Glanville fritillary butterfly (Melitaea cinxia). Attention is paid on the effects of flight metabolism, genotypes at candidate loci, and environmental conditions. Measurements were made under a natural range of conditions using infrared thermal imaging. Heating of flight muscles by flight metabolism has been presumed to be negligible in small butterflies. However, the results demonstrate that Glanville fritillary males with high flight metabolic rate maintain elevated body temperature better during flight than males with a low rate of flight metabolism. This effect is likely to have a significant influence on the dispersal performance and fitness of butterflies and demonstrates the possible importance of intraspecific physiological variation on dispersal in other similar ectothermic insects. The results also suggest that individuals having an advantage in low ambient temperatures can be susceptible to overheating at high temperatures. Further, tolerance of high temperatures may be important for flight performance, as indicated by an association of heat‐shock protein (Hsp70) genotype with flight metabolic rate and body temperature at takeoff. The dynamics of body temperature at flight and factors affecting it also differed significantly between female and male butterflies, indicating that thermal dynamics are governed by different mechanisms in the two sexes. This study contributes to knowledge about factors affecting intraspecific variation in dispersal‐related thermal performance in butterflies and other insects. Such information is needed for predictive models of the evolution of dispersal in the face of habitat fragmentation and climate change.  相似文献   
29.
Efficient display of antibody on filamentous phage M13 coat is crucial for successful biopanning selections. We applied a directed evolution strategy to improve the oligovalent display of a poorly behaving Fab fragment fused to phage gene-3 for minor coat protein (g3p). The Fab displaying clones were enriched from a randomly mutated Fab gene library with polyclonal anti-mouse IgG antibodies. Contribution of each mutation to the improved phenotype of one selected mutant was studied. It was found out that two point mutations had significant contribution to the display efficiency of Fab clones superinfected with hyperphage. The most dramatic effect was connected to a start codon mutation, from AUG to GUG, of the PelB signal sequence preceding the heavy chain. The clone carrying this mutation, FabMGUG, displayed Fab 19-fold better and yielded twofold higher phage titers than the original Fab.  相似文献   
30.
Nitrogen deficiency diminishes consumption of photosynthates in anabolic metabolism. We studied adjustments of the photosynthetic machinery in nitrogen-deficient bean plants and found four phenomena. First, the number of chloroplasts per cell decreased. Chloroplasts of nitrogen starved leaves contained less pigments than those of control leaves, but the in vitro activities of light reactions did not change when measured on chlorophyll basis. Second, nitrogen deficiency induced cyclic electron transfer. The amounts of Rubisco and ferredoxin-NADP+ reductase decreased in nitrogen starved plants. Low activities of these enzymes are expected to lead to increase in reduction of oxygen by photosystem I. However, diaminobenzidine staining did not reveal hydrogen peroxide production in nitrogen starved plants. Measurements of far-red-light-induced redox changes of the primary donor of photosystem I suggested that instead of producing oxygen radicals, nitrogen starved plants develop a high activity of cyclic electron transport that competes with oxygen for electrons. Nitrogen starvation led to decrease in photochemical quenching and increase in non-photochemical quenching, indicating that cyclic electron transport reduces the plastoquinone pool and acidifies the lumen. A third effect is redistribution of excitation energy between the photosystems in favor of photosystem I. Thus, thylakoids of nitrogen starved plants appeared to be locked in state 2, which further protects photosystem II by decreasing its absorption cross-section. As a fourth response, the proportion of non-QB-reducing photosystem II reaction centers increased and the redox potential of the QB/QB pair decreased by 25 mV in a fraction of photosystem II centers of nitrogen starved plants.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号