首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   974篇
  免费   103篇
  2021年   4篇
  2018年   6篇
  2017年   12篇
  2016年   7篇
  2015年   27篇
  2014年   34篇
  2013年   50篇
  2012年   46篇
  2011年   47篇
  2010年   23篇
  2009年   20篇
  2008年   39篇
  2007年   37篇
  2006年   34篇
  2005年   35篇
  2004年   46篇
  2003年   50篇
  2002年   55篇
  2001年   37篇
  2000年   41篇
  1999年   33篇
  1998年   18篇
  1997年   23篇
  1996年   23篇
  1995年   14篇
  1994年   16篇
  1993年   13篇
  1992年   27篇
  1991年   19篇
  1990年   17篇
  1989年   20篇
  1988年   29篇
  1987年   20篇
  1986年   5篇
  1985年   11篇
  1984年   15篇
  1983年   6篇
  1982年   11篇
  1981年   8篇
  1980年   7篇
  1979年   9篇
  1978年   11篇
  1977年   9篇
  1976年   7篇
  1975年   8篇
  1973年   4篇
  1968年   5篇
  1967年   10篇
  1966年   8篇
  1965年   5篇
排序方式: 共有1077条查询结果,搜索用时 296 毫秒
101.

Objective

Intra-arterial stem cell transplantation exerts neuroprotective effects for ischemic stroke. However, the optimal therapeutic time window and mechanisms have not been completely understood. In this study, we investigated the relationship between the timing of intra-arterial transplantation of allogeneic mesenchymal stem cells (MSCs) in ischemic stroke model in rats and its efficacy in acute phase.

Methods

Adult male Wistar rats weighing 200 to 250g received right middle cerebral artery occlusion (MCAO) for 90 minutes. MSCs (1×106cells/ 1ml PBS) were intra-arterially injected at either 1, 6, 24, or 48 hours (1, 6, 24, 48h group) after MCAO. PBS (1ml) was intra-arterially injected to control rats at 1 hour after MCAO. Behavioral test was performed immediately after reperfusion, and at 3, 7 days after MCAO using the Modified Neurological Severity Score (mNSS). Rats were euthanized at 7 days after MCAO for evaluation of infarct volumes and the migration of MSCs. In order to explore potential mechanisms of action, the upregulation of neurotrophic factor and chemotactic cytokine (bFGF, SDF-1α) induced by cell transplantation was examined in another cohort of rats that received intra-arterial transplantation at 24 hours after recanalization then euthanized at 7 days after MCAO for protein assays.

Results

Behavioral test at 3 and 7 days after transplantation revealed that stroke rats in 24h group displayed the most robust significant improvements in mNSS compared to stroke rats in all other groups (p’s<0.05). Similarly, the infarct volumes of stroke rats in 24h group were much significantly decreased compared to those in all other groups (p’s<0.05). These observed behavioral and histological effects were accompanied by MSC survival and migration, with the highest number of integrated MSCs detected in the 24h group. Moreover, bFGF and SDF-1α levels of the infarcted cortex were highly elevated in the 24h group compared to control group (p’s<0.05).

Conclusions

These results suggest that intra-arterial allogeneic transplantation of MSCs provides post-stroke functional recovery and reduction of infarct volumes in ischemic stroke model of rats. The upregulation of bFGF and SDF-1α likely played a key mechanistic role in enabling MSC to afford functional effects in stroke. MSC transplantation at 24 hours after recanalization appears to be the optimal timing for ischemic stroke model, which should guide the design of clinical trials of cell transplantation for stroke patients.  相似文献   
102.
A novel cell surface display system in Aspergillus oryzae was established by using a chitin-binding module (CBM) from Saccharomyces cerevisiae as an anchor protein. CBM was fused to the N or C terminus of green fluorescent protein (GFP) and the fusion proteins (GFP-CBM and CBM-GFP) were expressed using A. oryzae as a host. Western blotting and fluorescence microscopy analysis showed that both GFP-CBM and CBM-GFP were successfully expressed on the cell surface. In addition, cell surface display of triacylglycerol lipase from A. oryzae (tglA), while retaining its activity, was also successfully demonstrated using CBM as an anchor protein. The activity of tglA was significantly higher when tglA was fused to the C terminus than N terminus of CBM. Together, these results show that CBM used as a first anchor protein enables the fusion of both the N and/or C terminus of a target protein.  相似文献   
103.
Chloroplasts arose from a cyanobacterial endosymbiont and multiply by division, reminiscent of their free-living ancestor. However, chloroplasts can not divide by themselves, and the division is performed and controlled by proteins that are encoded by the host nucleus. The continuity of chloroplasts was originally established by synchronization of endosymbiotic cell division with host cell division, as seen in existent algae. In contrast, land plant cells contain multiple chloroplasts, the division of which is not synchronized, even in the same cell. Land plants have evolved cell and chloroplast differentiation systems in which the size and number of chloroplasts (or other types of plastids) change along with their respective cellular function by changes in the division rate. We recently reported that PLASTID DIVISION (PDV) proteins, land-plant specific components of the chloroplast division apparatus, determined the rate of chloroplast division. The level of PDV protein is regulated by the cell differentiation program based on cytokinin, and the increase or decrease of the PDV level gives rise to an increase or decrease in the chloroplast division rate. Thus, the integration of PDV proteins into the chloroplast division machinery enabled land plant cells to change chloroplast size and number in accord with the fate of cell differentiation.Key words: chloroplast division, cell cycle, cell differentiation, cytokinin, endosymbiosis, evolution  相似文献   
104.
105.
Although various management methods have been developed for heart failure, it is necessary to investigate the diagnostic or therapeutic targets of heart failure. Accordingly, we have developed different approaches for managing heart failure by using conventional microarray analyses. We analyzed gene expression profiles of myocardial samples from 12 patients with heart failure and constructed datasets of heart failure-associated genes using clinical parameters such as pulmonary artery pressure (PAP) and ejection fraction (EF). From these 12 genes, we selected four genes with high expression levels in the heart, and examined their novelty by performing a literature-based search. In addition, we included four G-protein-coupled receptor (GPCR)-encoding genes, three enzyme-encoding genes, and one ion-channel protein-encoding gene to identify a drug target for heart failure using in silico microarray database. After the in vitro functional screening using adenovirus transfections of 12 genes into rat cardiomyocytes, we generated gene-targeting mice of five candidate genes, namely, MYLK3, GPR37L1, GPR35, MMP23, and NBC1. The results revealed that systolic blood pressure differed significantly between GPR35-KO and GPR35-WT mice as well as between GPR37L1-Tg and GPR37L1-KO mice. Further, the heart weight/body weight ratio between MYLK3-Tg and MYLK3-WT mice and between GPR37L1-Tg and GPR37L1-KO mice differed significantly. Hence, microarray analysis combined with clinical parameters can be an effective method to identify novel therapeutic targets for the prevention or management of heart failure.  相似文献   
106.
AimsThe inhibitory effect of angiotensin II type 1 receptor blockers (ARBs) on P-glycoprotein (P-gp) was examined to evaluate their clinical drug–drug interaction (DDI) potential.Main methodsWe performed an inhibition study on the vectorial transport of digoxin, a typical substrate for P-gp, using a human colonic adenocarcinoma cell line, Caco-2 cells, and verapamil-stimulated ATPase activity using human multidrug resistance 1 (hMDR1)-expressing membrane.Key findingsThe vectorial transport of digoxin was inhibited by candesartan cilexetil, irbesartan and telmisartan with the IC50 values of 14.7, 34.0 and 2.19 µM, respectively. Those values were 7.4–426-fold higher than their theoretical clinical gastrointestinal concentration [I] at doses in clinical DDI studies. Other ARBs failed to show interaction with P-gp.SignificanceIt was demonstrated that candesartan cilexetil, irbesartan and telmisartan had the potential to inhibit the transport of various drugs via P-gp. Telmisartan, which caused an increase in the serum digoxin concentration in humans, had a sufficiently high [I]/IC50 value, suggesting that DDI between digoxin and telmisartan was caused by the inhibition of digoxin efflux via intestinal P-gp.  相似文献   
107.

Introduction  

Microvasculopathy is one of the characteristic features in patients with systemic sclerosis (SSc), but underlying mechanisms still remain uncertain. In this study, we evaluated the potential involvement of monocytic endothelial progenitor cells (EPCs) in pathogenic processes of SSc vasculopathy, by determining their number and contribution to blood vessel formation through angiogenesis and vasculogenesis.  相似文献   
108.
A promising strategy for identifying disease susceptibility genes for both single- and multiple-gene diseases is to search patients' autosomes for shared chromosomal segments derived from a common ancestor. Such segments are characterized by the distinct identity of their haplotype. The methods and algorithms currently available have only a limited capability for determining a high-resolution haplotype genomewide. We herein introduce the homozygosity haplotype (HH), a haplotype described by the homozygous SNPs that are easily obtained from high-density SNP genotyping data. The HH represents haplotypes of both copies of homologous autosomes, allowing for direct comparisons of the autosomes among multiple patients and enabling the identification of the shared segments. The HH successfully detected the shared segments from members of a large family with Marfan syndrome, which is an autosomal dominant, single-gene disease. It also detected the shared segments from patients with model multigene diseases originating with common ancestors who lived 10-25 generations ago. The HH is therefore considered to be useful for the identification of disease susceptibility genes in both single- and multiple-gene diseases.  相似文献   
109.
Peroxisomes play an important role in beta-oxidation of fatty acids. All peroxisomal matrix proteins are synthesized in the cytosol and post-translationally sorted to the organelle. Two distinct peroxisomal signal targeting sequences (PTSs), the C-terminal PTS1 and the N-terminal PTS2, have been defined. Import of precursor PTS2 proteins into the peroxisomes is accompanied by a proteolytic removal of the N-terminal targeting sequence. Although the PTS1 signal is preserved upon translocation, many PTS1 proteins undergo a highly selective and limited cleavage. Here, we demonstrate that Tysnd1, a previously uncharacterized protein, is responsible both for the removal of the leader peptide from PTS2 proteins and for the specific processing of PTS1 proteins. All of the identified Tysnd1 substrates catalyze peroxisomal beta-oxidation. Tysnd1 itself undergoes processing through the removal of the presumably inhibitory N-terminal fragment. Tysnd1 expression is induced by the proliferator-activated receptor alpha agonist bezafibrate, along with the increase in its substrates. A model is proposed where the Tysnd1-mediated processing of the peroxisomal enzymes promotes their assembly into a supramolecular complex to enhance the rate of beta-oxidation.  相似文献   
110.
In endothelial cells, NF-kappaB is an important intracellular signaling molecule by which changes in wall shear stress are transduced into the nucleus to initiate downstream endothelial nitric oxide synthase (NOS3) gene expression. We investigated whether NF-kappa light-chain gene enhancer in B cells 1 (NFKB1) promoter polymorphism ((-94)NFKB1 I/D, where I is the insertion allele and D is the deletion allele) was associated with 1) NOS3 gene expression in endothelial cells under physiological levels of unidirectional laminar shear stress (LSS) and 2) endothelial function in prehypertensive and stage I hypertensive individuals before and after a 6-mo supervised endurance exercise intervention. Competitive EMSAs revealed that proteins present in the nuclei of endothelial cells preferentially bound to the I allele NFKB1 promoter compared with the D allele. Reporter gene assays showed that the I allele promoter had significantly higher activity than the D allele. In agreement with these observations, homozygous II genotype cells had higher p50 expression levels than homozygous DD genotype cells. Cells with the homozygous II genotype showed a greater increase in NOS3 protein expression than did homozygous DD genotype cells under LSS. Functional experiments on volunteers confirmed higher baseline reactive hyperemic forearm blood flow, and, furthermore, the subgroup analysis revealed that DD homozygotes were significantly less prevalent in the exercise responder group compared with II and ID genotypes. We conclude that the (-94)NFKB1 I/D promoter variation contributes to the modulation of vascular function and adaptability to exercise-induced flow shear stress, most likely due to differences in NFKB1 gene transactivity.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号