首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1583篇
  免费   102篇
  1685篇
  2022年   10篇
  2021年   12篇
  2020年   10篇
  2019年   14篇
  2018年   17篇
  2017年   13篇
  2016年   29篇
  2015年   35篇
  2014年   30篇
  2013年   69篇
  2012年   63篇
  2011年   62篇
  2010年   43篇
  2009年   31篇
  2008年   64篇
  2007年   83篇
  2006年   71篇
  2005年   75篇
  2004年   69篇
  2003年   67篇
  2002年   61篇
  2001年   68篇
  2000年   82篇
  1999年   59篇
  1998年   28篇
  1997年   21篇
  1996年   19篇
  1995年   13篇
  1994年   17篇
  1993年   24篇
  1992年   30篇
  1991年   23篇
  1990年   28篇
  1989年   18篇
  1988年   36篇
  1987年   29篇
  1986年   22篇
  1985年   29篇
  1984年   22篇
  1983年   21篇
  1982年   25篇
  1981年   18篇
  1980年   12篇
  1979年   11篇
  1978年   7篇
  1976年   10篇
  1975年   9篇
  1969年   7篇
  1968年   6篇
  1966年   7篇
排序方式: 共有1685条查询结果,搜索用时 0 毫秒
81.
According to a report from the World Health Organization (WHO), the mortality and disease severity induced by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are significantly higher in cancer patients than those of individuals with no known condition. Common and cancer-specific risk factors might be involved in the mortality and severity rates observed in the coronavirus disease 2019 (COVID-19). Similarly, various factors might contribute to the aggravation of COVID-19 in patients with cancer. However, the factors involved in the aggravation of COVID-19 in cancer patients have not been fully investigated so far. The formation of metastases in other organs is common in cancer patients. Therefore, the present study investigated the association between lung metastatic lesion formation and SARS-CoV-2 infectivity. In the pulmonary micrometastatic niche of patients with ovarian cancer, alveolar epithelial stem-like cells were found adjacent to ovarian cancer. Moreover, angiotensin-converting enzyme 2, a host-side receptor for SARS-CoV-2, was expressed in these alveolar epithelial stem-like cells. Furthermore, the spike glycoprotein receptor-binding domain (RBD) of SARS-CoV-2 was bound to alveolar epithelial stem-like cells. Altogether, these data suggested that patients with cancer and pulmonary micrometastases are more susceptible to SARS-CoV-2. The prevention of de novo niche formation in metastatic diseases might constitute a new strategy for the clinical treatment of COVID-19 for patients with cancer.  相似文献   
82.
The present study was undertaken to determine whether altered expression of the VDCC beta-subunits in pancreatic beta-cells could play a role in the changes in beta-cell sensitivity to glucose that occur with diabetes. Application of competitive RT-PCR procedure revealed that in normal Wistar rats, LETO and prediabetic OLETF rats, the beta(2)-subunit mRNA levels were 60-200-fold greater than the levels for the beta(3)-subunit. These findings suggest that the beta(2)-subunit as well as the beta-cell type VDCC1 alpha(1)-subunit may be the predominant form of the VDCC expressed in pancreatic beta-cells. The levels of mRNA encoding the beta-subunits and the beta-cell type alpha(1)-subunit as well as insulin were significantly reduced in diabetic rats. Perfusion experiments revealed that diabetic rats showed the higher basal insulin secretion and profoundly impaired insulin secretory responses to glucose compared with non-diabetic rats. Alternatively, impaired insulin secretory responses to glucose in high dose glucose-infused rats were recovered partly with the elevation of mRNA levels of the VDCC beta(2)- and beta(3)-subunits as well as the alpha(1)-subunit by the treatment with diazoxide. Thus, considering the possibility that the most striking effect of the VDCC alpha(1) beta-subunit coexpression in pancreatic beta-cells might occur on activation kinetics like the skeletal muscle, the impairment of further activation of the VDCCs to acute glucose challenge caused by the reduced expressions of the alpha(1) beta-subunits mRNAs in type 2 diabetic animals might be at least partly associated with the alterations in beta-cell sensitivity to glucose.  相似文献   
83.
Toll-like receptor 2 (TLR2) and CD14 function as pattern recognition receptors for bacterial peptidoglycan (PGN). TLRs and CD14 possess repeats of the leucine-rich motif. To address the role of the extracellular domain of TLR2 in PGN signaling, we constructed CD14/TLR2 chimeras, in which residues 1-356 or 1-323 of CD14 were substituted for the extracellular domain of TLR2, and five deletion mutants of TLR2, in which the progressively longer regions of extracellular TLR2 regions were deleted. PGN induced NF-kappaB activation in HEK293 cells expressing TLR2 but not in cells expressing CD14/TLR2 chimeras. The cells transfected with a deletion mutant TLR2(DeltaCys30-Ile64) as well as TLR2(DeltaCys30-Asp160) and TLR2(DeltaCys30-Asp305) failed to respond to PGN, indicating the importance of the TLR2 region Cys(30)-Ile(64). Although TLR2(DeltaCys30-Ser39) conferred cell responsiveness to PGN, the cells expressing TLR2(DeltaSer40-Ile64) failed to induce NF-kappaB activation. In addition, NF-kappaB activity elicited by PGN was significantly attenuated in the presence of synthetic peptide corresponding to the TLR2 region Ser(40)-Ile(64). From these results, we conclude that; 1) CD14 cannot functionally replace the extracellular domain of TLR2 in PGN signaling; 2) the TLR2 region Cys(30)-Ser(39) is not required for PGN recognition; 3) the TLR2 region containing Ser(40)-Ile(64) is critical for PGN recognition.  相似文献   
84.
85.
BIT (brain immunoglobulin-like molecule with tyrosine-based activation motifs) is a membrane glycoprotein that has two cytoplasmic TAMs (tyrosine-based activation motifs). We previously reported that tyrosine-phosphorylated TAMs of BIT interact with the Src homology 2 domain-containing protein tyrosine phosphatase SHP-2 both in vitro and in transfected cells, and this association results in a potent stimulation of the phosphatase activity of SHP-2. Both BIT and SHP-2 are highly expressed in the mammalian brain, and they may play important roles in the regulation of synaptic function. In this study, we found that nerve growth factor (NGF) treatment of PC12 cells leads to the tyrosine phosphorylation of BIT and a subsequent complex formation between BIT and SHP-2. Furthermore, brain-derived neurotrophic factor (BDNF) and neurotrophin-3 (NT-3) also induced the tyrosine phosphorylation of BIT and the association with SHP-2 in primary cultured rat neurons. Our results suggest that the BIT-SHP-2 signaling pathway is a novel signal transduction mechanism of neurons that acts in response to neurotrophic factors such as NGF, BDNF, and NT-3.  相似文献   
86.
87.
88.
BACKGROUND AND AIMS: Betula ermanii, B. maximowicziana and B. platyphylla var. japonica have heterophyllous leaves (i.e. early leaves and late leaves) and are typical pioneer species in northern Japan. Chemical and physical defences against herbivores in early and late leaves of these species were studied. METHODS: Two-year-old seedlings were grown under full sunlight in a single growing season. Three-week-old leaves of each seedling were harvested three times (May, July and October). Total phenolics and condensed tannin content were determined for chemical defence and leaf toughness and trichome density were assessed for physical defence. Defoliation of early leaves in May was also performed to study the contribution of early leaves to subsequent growth. KEY RESULTS: Chemical and physical defences were greater in early than late leaves in B. platyphylla and B. ermanii, whereas the reverse was true in B. maximowicziana. In contrast to its weak chemical defences, the trichome density in B. maximowicziana was very high. In B. platyphylla and B. ermanii, the relative growth rates (RGR) were greater early in the growing season. Negative effects on growth of removal of early leaves were significant only in B. platyphylla. CONCLUSIONS: B. platyphylla and B. ermanii invest in defence in early rather than late leaves, since early leaves are crucial to subsequent growth. In contrast, B. maximowicziana more strongly defends its late leaves, since its RGR is maintained at the same level throughout the growing season.  相似文献   
89.
A dietary carcinogen, 3-amino-1,4-dimethyl-5H-pyrido[4,3-b]indole (Trp-P-1) at 20 microM activates caspase-3-like proteases as an apoptotic marker in rat splenocytes. The present study demonstrated 100 microM Trp-P-1 induced necrosis with activation of caspase-3-like proteases. The activation in necrosis and apoptosis resulted from the activation of caspase-9 and caspase-8, respectively. Thus, Trp-P-1 induces apoptosis and necrosis with the activation of different caspases.  相似文献   
90.
In this study, we have examined the anti-inflammatory actions of royal jelly (RJ) at a cytokine level. When supernatants of RJ suspensions were added to a culture of mouse peritoneal macrophages stimulated with lipopolysaccharide and IFN-gamma, the production of proinflammatory cytokines, such as TNF-alpha, IL-6, and IL-1, was efficiently inhibited in a dose-dependent manner without having cytotoxic effects on macrophages. This suggests that RJ contains factor(s) responsible for the suppression of proinflammatory cytokine secretion. We named the factor for honeybees RJ-derived anti-inflammatory factor (HBRJ-AIF), and further investigated the molecular aspects of it. Size fractionation study showed that HBRJ-AIF is composed of substances of low (< 5 kDa) and high (> 30 kDa) molecular weights, with the former being a major component. Chromatographic analysis showed that MRJP3 is one candidate for the HBRJ-AIF with high molecular weights. Thus, our results suggest that RJ has anti-inflammatory actions through inhibiting proinflammatory cytokine production by activated macrophages.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号