首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1220篇
  免费   49篇
  国内免费   3篇
  2023年   7篇
  2022年   13篇
  2021年   30篇
  2020年   21篇
  2019年   26篇
  2018年   34篇
  2017年   27篇
  2016年   44篇
  2015年   60篇
  2014年   80篇
  2013年   96篇
  2012年   101篇
  2011年   89篇
  2010年   69篇
  2009年   56篇
  2008年   64篇
  2007年   57篇
  2006年   43篇
  2005年   34篇
  2004年   39篇
  2003年   25篇
  2002年   20篇
  2001年   18篇
  2000年   15篇
  1999年   20篇
  1998年   17篇
  1997年   5篇
  1996年   3篇
  1995年   6篇
  1993年   4篇
  1992年   7篇
  1991年   22篇
  1990年   8篇
  1989年   13篇
  1988年   9篇
  1987年   6篇
  1986年   9篇
  1985年   8篇
  1984年   13篇
  1983年   10篇
  1982年   7篇
  1981年   5篇
  1980年   4篇
  1979年   3篇
  1978年   4篇
  1976年   4篇
  1972年   4篇
  1970年   2篇
  1969年   2篇
  1968年   2篇
排序方式: 共有1272条查询结果,搜索用时 15 毫秒
971.
The effect of fluctuations of salinity in three different seasons on diazotrophic populations and N2 fixation in six mono cropped rice field soils of the coastal region of the Gangetic delta of West Bengal, India, was studied. The average pH, ECe, organic carbon and total nitrogen of the soils ranged from 4.99–7.08, 2.02–19.58 dSm−1, 4.68–12.03 g kg−1 and 0.44–1.70 g kg −1, respectively. The average log colony forming units of the bacterial populations and N2-fixation in the soils varied from 4.61 to 5.86 and 2.74 to 4.52 mg N2 fixed 50 ml −1 culture media respectively, with the lowest value recorded in summer. Recovery of microorganisms and N2- fixation gradually decreased with extraneous addition of NaCl in the culture media. All the eight isolates were Gram positive, spore and capsule formers. They could utilize glucose, sucrose, mannitol, starch, citrate and nitrate, and were catalase and gelatinase positive, but indole, methyl red and Vogues Proskauer reaction negative. The organisms produced alkaline reaction on TSI agar slant. The acetylene reduction assay of the isolates at 0 and 1% NaCl in the culture media were 4.51–164.52 and 1.72–100.6 nmole C2H4 ml−1 culture media in 72 h, respectively. The isolates could fix 2.42–4.45 and 2.04–4.08 mg N2 fixed 50 ml−1 culture media at 0 and 1% NaCl in the culture media respectively. 16S rDNA sequences of the isolates were similar to the species: Bacillus sp. isolate 28A, Bacillus sp. MOLA 87, Bacillus sp. By113 (B)Ydz-dh, Bacillus sp. PN13, Bacillus licheniformis strain RH101, Bacterium Antarctica 14, Bacillus sp. PN13 and Bacillus megaterium.  相似文献   
972.
Alkaline phosphatases (APases) are important enzymes in organophosphate utilization. Three prokaryotic APase gene families, PhoA, PhoX, and PhoD, are known; however, their functional characterization in cyanobacteria largely remains to be clarified. In this study, we cloned the phoD gene from a halotolerant cyanobacterium, Aphanothece halophytica (phoD(Ap)). The deduced protein, PhoD(Ap), contains Tat consensus motifs and a peptidase cleavage site at the N terminus. The PhoD(Ap) enzyme was activated by Ca(2+) and exhibited APase and phosphodiesterase (APDase) activities. Subcellular localization experiments revealed the secretion and processing of PhoD(Ap) in a transformed cyanobacterium. Expression of the phoD(Ap) gene in A. halophytica cells was upregulated not only by phosphorus (P) starvation but also under salt stress conditions. Our results suggest that A. halophytica cells possess a PhoD that participates in the assimilation of P under salinity stress.  相似文献   
973.
Neural stem cells (NSCs) have the remarkable capacity to self-renew and the lifelong ability to generate neurons in the adult mammalian brain. However, the molecular and cellular mechanisms contributing to these behaviors are still not understood. Now that prospective isolation of the NSCs has become feasible, these mechanisms can be studied. Here we describe a protocol for the efficient isolation of adult NSCs, by the application of a dual-labeling strategy on the basis of their glial identity and ciliated nature. The cells are isolated from the lateral ventricular subependymal zone (SEZ) of adult hGFAP-eGFP (human glial fibrillary acidic protein-enhanced green fluorescent protein) transgenic mice by fluorescence-activated cell sorting. Staining against prominin1 (CD133) allows the isolation of the NSCs (hGFAP-eGFP(+)/prominin1(+)), which can be further subdivided by labeling with the fluorescent epidermal growth factor. This protocol, which can be completed in 7 h, allows the assessment of quantitative changes in SEZ NSCs and the examination of their molecular and functional characteristics.  相似文献   
974.
975.
Monocrotophos (MCP) is a widely used organophosphate (OP) pesticide. We studied apoptotic changes and their correlation with expression of selected cytochrome P450s (CYPs) in PC12 cells exposed to MCP. A significant induction in reactive oxygen species (ROS) and decrease in glutathione (GSH) levels were observed in cells exposed to MCP. Following the exposure of PC12 cells to MCP (10(-5) M), the levels of protein and mRNA expressions of caspase-3/9, Bax, Bcl(2), P(53), P(21), GSTP1-1 were significantly upregulated, whereas the levels of Bclw, Mcl1 were downregulated. A significant induction in the expression of CYP1A1/1A2, 2B1/2B2, 2E1 was also observed in PC12 cells exposed to MCP (10(-5) M), whereas induction of CYPs was insignificant in cells exposed to 10(-6) M concentration of MCP. We believe that this is the first report showing altered expressions of selected CYPs in MCP-induced apoptosis in PC12 cells. These apoptotic changes were mitochondria mediated and regulated by caspase cascade. Our data confirm the involvement of specific CYPs in MCP-induced apoptosis in PC12 cells and also identifies possible cellular and molecular mechanisms of organophosphate pesticide-induced apoptosis in neuronal cells.  相似文献   
976.

Background

There is a great interest in understanding and exploiting protein-protein associations as new routes for treating human disease. However, these associations are difficult to structurally characterize or model although the number of X-ray structures for protein-protein complexes is expanding. One feature of these complexes that has received little attention is the role of water molecules in the interfacial region.

Methodology

A data set of 4741 water molecules abstracted from 179 high-resolution (≤ 2.30 Å) X-ray crystal structures of protein-protein complexes was analyzed with a suite of modeling tools based on the HINT forcefield and hydrogen-bonding geometry. A metric termed Relevance was used to classify the general roles of the water molecules.

Results

The water molecules were found to be involved in: a) (bridging) interactions with both proteins (21%), b) favorable interactions with only one protein (53%), and c) no interactions with either protein (26%). This trend is shown to be independent of the crystallographic resolution. Interactions with residue backbones are consistent for all classes and account for 21.5% of all interactions. Interactions with polar residues are significantly more common for the first group and interactions with non-polar residues dominate the last group. Waters interacting with both proteins stabilize on average the proteins'' interaction (−0.46 kcal mol−1), but the overall average contribution of a single water to the protein-protein interaction energy is unfavorable (+0.03 kcal mol−1). Analysis of the waters without favorable interactions with either protein suggests that this is a conserved phenomenon: 42% of these waters have SASA ≤ 10 Å2 and are thus largely buried, and 69% of these are within predominantly hydrophobic environments or “hydrophobic bubbles”. Such water molecules may have an important biological purpose in mediating protein-protein interactions.  相似文献   
977.
Cdc42 of the Rho GTPase family has been implicated in cell actin organization, proliferation, survival, and migration but its physiological role is likely cell-type specific. By a T cell-specific deletion of Cdc42 in mouse, we have recently shown that Cdc42 maintains naïve T cell homeostasis through promoting cell survival and suppressing T cell activation. Here we have further investigated the involvement of Cdc42 in multiple stages of T cell differentiation. We found that in Cdc42−/− thymus, positive selection of CD4+CD8+ double-positive thymocytes was defective, CD4+ and CD8+ single-positive thymocytes were impaired in migration and showed an increase in cell apoptosis triggered by anti-CD3/-CD28 antibodies, and thymocytes were hyporesponsive to anti-CD3/-CD28-induced cell proliferation and hyperresponsive to anti-CD3/-CD28-stimulated MAP kinase activation. At the periphery, Cdc42-deficient naive T cells displayed an impaired actin polymerization and TCR clustering during the formation of mature immunological synapse, and showed an enhanced differentiation to Th1 and CD8+ effector and memory cells in vitro and in vivo. Finally, Cdc42−/− mice exhibited exacerbated liver damage in an induced autoimmune disease model. Collectively, these data establish that Cdc42 is critically involved in thymopoiesis and plays a restrictive role in effector and memory T cell differentiation and autoimmunity.  相似文献   
978.
Head and neck squamous cell carcinoma (HNSCC) is the one of the most frequently found cancers in the world. The aim of the study was to find the genes responsible and enriched pathways associated with HNSCC using bioinformatics and survival analysis methods. A total of 646 patients with HNSCC based on clinical information were considered for the study. HNSCC samples were grouped according to the parameters (RFS, DFS, PFS, or OS). The probe ID of these 11 genes was retrieved by Affymetrix using the NetAffx Query algorithm. The protein–protein interaction (PPI) network and Kaplan–Meier curve were used to find associations among the genes' expression data. We found that among these 11 genes, nine genes, CCNA1, MMP3, FLRT3, GJB6, ZFR2, PITX2, SYCP2, MEI1, and UGT8 were significant (p < .05). A survival plot was drawn between the p value and gene expression. This study helped us find the nine significant genes which play vital roles in HNSCC along with their key pathways and their interaction with other genes in the PPI network. Finally, we found the biomarker index for relapse time and risk factors for HNSCC in cancer patients.  相似文献   
979.

Lentil is nutritionally important crop for human diet and enriched with quality protein, complex carbohydrates, fibers, essential minerals, and vitamins. However, genetic improvement of lentil is hampered largely due to unattributed and unexploited genetic and genomic resources. To administer genomic resources in lentil, we have identified 9949 EST-SSR loci from lentil RNA Seq data and validated 50 of them using 234 genotypes representing various Lens species and 34 accessions of 12 different legumes. Out of 50 EST-SSRs, 46 were polymorphic with polymorphic information content (PIC) ranging from 0.16–0.74. The transferability of these markers exhibited varied levels from 45.1 to 71.3% across the cultivated/wild species of lentil and from 10.8 to 54.3% across the twelve legume genera. On the basis of total identified EST-SSRs, mononucleotide (51%) repeat proportion was high followed by trinucleotide (30%) and dinucleotide (14%) repeat. Population structure and cluster analysis classified all the studied genotypes into 4 groups. However, principal coordinate analysis (PCA) was able to group genotypes based on their area of collection. Annotation of all the 46 polymorphic marker sequences revealed that most of the markers linked to genes involved in metabolism of plants. Further, polymorphic markers were also used for linkage mapping in F3 population where 4 markers were found to be linked with a map distance of 72.5 cM. The newly developed markers represent an impressive tool for characterization of germplasm, genetic linkage mapping, phylogenetic studies, as well as to determine disparity in taxonomic status of subspecies of the genus Lens.

  相似文献   
980.
The non‐specific lipid transfer proteins (nsLTPs) are multifunctional seed proteins engaged in several different physiological processes. The nsLTPs are stabilized by four disulfide bonds and exhibit a characteristic hydrophobic cavity, which is the primary lipid binding site. While these proteins are known to transfer lipids between membranes, the mechanism of lipid transfer has remained elusive. Four crystal structures of nsLTP from Solanum melongena, one in the apo‐state and three myristic acid bound states were determined. Among the three lipid bound states, two lipid molecules were bound on the nsLTP surface at different positions and one was inside the cavity. The lipid‐dependent conformational changes leading to opening of the cavity were revealed based on structural and spectroscopic data. The surface‐bound lipid represented a transient intermediate state and the lipid ultimately moved inside the cavity through the cavity gate as revealed by molecular dynamics simulations. Two critical residues in the loop regions played possible ‘gating’ role in the opening and closing of the cavity. Antifungal activity and membrane permeabilization effect of nsLTP against Fusarium oxysporum suggested that it could possibly involve in bleaching out the lipids. Collectively, these studies support a model of lipid transfer mechanism by nsLTP via intermediate states.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号